

Population Pharmacokinetics of Isoniazid in Children with Pulmonary Tuberculosis

SP Zvada¹, USH Simonsson², P Denti¹, PR Donald³, HS Schaaf³, PJ Smith¹, HM McIlleron¹

¹University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, South Africa ²Uppsala University, Department of Pharmaceutical Biosciences, Uppsala, Sweden

³Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Stellenbosch, and Tygerberg Children's Hospital

; s imba.zvada@gmail.com Email:

UPPSALA UNIVERSITET

Background and Objectives

- Isoniazid is one of the most important first-line anti-TB drugs
- **Children are often neglected** during optimization of doses: daily doses (4-6) mg/kg) of Isoniazid derived from adult doses have been reported to be inadequate [1]
- The World Health Organisation's revised guidelines (2010) recommend a dose of 10-15 mg/kg/day in children across all weights [2]
- The aim of our study was to develop a model that describes population

pharmacokinetics of isoniazid in children with tuberculosis and employ it to explore the adequacy of the new guidelines.

Methods

- Previously published data (summarized in Table 1) from 56 South African children hospitalized for treatment of tuberculosis were used to describe the population pharmacokinetics of isoniazid [3]
- Also rifampicin and pyrazinamide were part of the treatment, in a "pediatric" dispersible fixed dose combination

Gender	29 males and 27 females
HIV status	22 Positive, 34 Negative
PK Sampling	1 and 4 months (at 0.75;1.5;3.0;4.0;6.0 hours after dose)
Acetylator Genotype	Slow (20), intermediate (24) ,fast (8), and unknown (8)
Age (yr) - median (IQR)	3.22 (1.58-5.38)
Weight (kg) - median (IQR)	12.5 (8.84 -17.2)

Individual predictions

Figure 1. Goodness of fit plots for the final Isoniazid model. The small open (blue in colour) circles are the observed concentration-time data points, the solid black line represent the scatter plot smoothing, and the solid red line is the line of best fit.

Time

Results

The pharmacokinetics of isoniazid was best described by a twocompartment model with first-order elimination and absorption

Table 1. Demographic and clinical characteristics of study of the children

- Total body weight was included in the model through allometric scaling on oral clearance (CL = CL_{std} ·(WT/12.5)^{0.75} and on apparent volume of distribution (V = V_{std} ·(WT/12.5))
- Final parameter estimates are shown in Table 2, model validation was through inspection of goodness of fit plots (Figure 1) and visual predictive check (Figure 2)

Table 2. Final parameter estimates for Isoniazid pharmacokinetics

4.55 (14.1) 9.89 (8.9) 14.8 (17.4) 13.0 (14.4)	22.4 (20.7)	-
9.89 (8.9) 14.8 (17.4) 13.0 (14.4)	22.4 (20.7)	-
14.8 (17.4) 13.0 (14.4)	22 0 (12 2)	_
13.0 (14.4)	22 0 (12 2)	
	25.8 (42.2)	
1.54 (18.9)	_	44.9 (21.7)
2.31 (14.7)	_	-
8.64 (78.5)	-	-
1 FIX	_	39.1 (7.3)
	_	-
	2.31 (14.7) 8.64 (78.5) 1 FIX	 2.31 (14.7) - 8.64 (78.5) - 1 FIX - 25.4 (3.1) -

Figure 2. Prediction corrected visual predictive check for the final isoniazid model stratified on genotype. The dashed and solid lines; lower, middle and upper are 5th, 50th, 95th percentiles of the observed data, respectively. The shaded areas around each percentile indicate the 95% confidence interval from model prediction. The small open circles are the observed concentration-time data points.

Conclusions

- Our model adequately described the pharmacokinetics of isoniazid in children
- Our results suggests that even with the new target dose (WHO) guidelines - 2010); children, especially the fast acetylators, may be under-dosed compared to adults.

Acknowledgements

SIMULATION:

- Using these values of CL, 10 mg/kg doses in accordance with the new WHO guidelines would achieve a median AUC_{INF} of 21.9, 12.6 and 8.3 mg·h/L in slow, intermediate and fast acetylators, respectively
- These AUCs are low when compared to the value of 32.5 mg·h/L (interquartile range: 22.5-42.4 mg·h/L) obtained in an ethnically similar but adult population [4]

SP Zvada is supported by the Wellcome Trust, UK (grant number: WT081199/Z/06/Z) Prof. NHG Holford for assistance when testing the enzyme maturation model

References

[1] McIlleron et al., CID 2009; 48:1547-1553

[2] Report of the meeting on TB medicines for children. WHO, Geneva 2008 (http://www.who.int/selection_medicines/committees/subcommittee/2/en/index.html)

[3] Schaaf HS, et al. BMC Infect Dis 2007;7:140

[4] McIlleron et al., AAC 2006; 50(4):1170-1177