QT prolongation assessment using model-averaging:
a robust alternative for Thorough QT studies
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Summary Results
The proposed model-averaging method enables to assess QT prolongation
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 The model-averaged method demonstrated satisfactory type | error in the

* The proposed approach Is based on exposure-response modeling using investigated scenarios (Fig. 3). The type | errors in the Emax, 50 ID/arm
model-averaging between a parametric and a nonparametric model scenario could be reduced to a value close to the nominal level by
(Fig. 1) optimizing the nonparametric settings.

Individual AQT-C data ~ 2QTci, = ar, + f(Cir, ) + s,  The model-averaged method led to conservative upward bias below

0.5 ms, except under high noise scenarios where bias was higher (Fig. 4).
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Figure 1. Summary of the model-averaged method

q:,Is the diurnal variation at sampling time t,, f Is a function representing the concentration-response relationship, C;; is the observed ~* parametric - model-averaged '™ nonparametric
drug concentration for patient i at time t,, 6is a vector of drug effect parameters, ;. _Is the residual error and M Is the number of

baseline measurements used in the computation of the individual baseline. where fma(Citn,H) IS a model-averaged estimator with

parameters 6, f,(C;.,9)is a parametric estimator with parameter 9, f,,(C;,) is a non-parametric estimator based on monotonically e The power of the mOdEI'averaged test was at least as hlgh as the power of
increasing I-splines, m is the weight of the parametric estimator, C;;, is the s™ element of the I-spline concentration vector and 9, are the the nonparametric test |n some ScenariOS |t Was markedly hlgher (Flg 5)

estimated slopes. MISEq 1 are weights adapted from [2]. G4y IS the geometric mean of the observed maximum individual
concentrations of the high dose group. One-sided 95% confidence intervals were obtained via bootstrap (N=999).
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