

Toxicogenomic dose-response models for DNA chips data from rats treated by flutamide

Olivier Colomban ^{1,2}, Bénédicte Naudet ³, Délphine Maucort-Boulch ³, Pascal Roy ³, Michel Tod ², Pascal Girard ²

¹ Université Claude Bernard Lyon 1, Lyon, France; ² EA3738 CTO, Faculté de Médecine Lyon-Sud, F-69600 Oullins, France; ³ Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Biostatistique, F-69310, Pierre-Bénite, France.

Background and Objectives

- The use of genomic technology for assessing health risks associated which chemical exposure has great potential.
- **Objectives**: To fully characterize testicular toxicity in adult Wistar rats induced by flutamide (FLU), to estimate the benchmark doses (BMD), and to estimate the BMD lower confidence limit (BMDL) modifying gene expression ¹.
- To achieve this objective, changes in toxicogenomic responses (gene behavior) in the testes, will be investigated on 43,379

genes (full-genome analysis) in rats exposed to FLU at different dose levels by oral gavage for 28 consecutive days.

NAME

M1

M2

М3

M4

Methods.

42 rats were randomized between 5 arms: 9 rats in • BMD estimation: defined as the vehicule (control group), 8 rats at 0.2, 7 rats at 1, 9 rats at dose level leading to a change in 6 and 9 rats at 30 mg/kg body weight per day.

• For each rat, microarray (Agilent 4x44k) was made.

• Linear model (M0) was applied to detect significant change of log(gene-expression) from baseline. False discovery rate was controlled during this step for the slope of linear model (α =20%).²

. Mhan aignificant non	Table I. NON-LINEAR MODELS (D=dose)			
• when significant, non-	MODEL	MODEL DESCRIPTION: $\mu_i(D)$	BEHAVIOR	
linear models were	Exponential	$a_i \times (b_i + (1-b_i) \times e^{(-k_i \times D)}) + \varepsilon_i$	Stimulation or inhibition	
tested: stimulation or	Emax	$a_i + \frac{G_{max_i} \times D}{\sqrt{D50_i^2} + D} + \epsilon_i$	Stimulation	
inhibition of gene		$a_i - \frac{G_{max_i} \times D}{\sqrt{D50_i^2} + D} + \epsilon_i$	Inhibition	
expression (exp., Emax,	Logistic	$\frac{G_{\max_{i}}}{1+e^{-\frac{(D-c_{i})}{k_{i}}}}+\epsilon_{i}$	Stimulation	
iogistic, see lable 1).		$\frac{a_i}{1+b_i \times e^{-k_i \times D}} + \epsilon_i$	Inhibition	

dose level leading to a change in predicted baseline ± 1 residual SD: **BMR**= $\mu_0 \pm \sigma \rightarrow BMD=\mu^{-1}(BMR)^1$. When normality of residual was rejected (Kolmogorov-Smirnov or Shapiro-Wilk test, $\alpha=5\%$), a bootstrap method was used to estimate the quantile of the BMR distribution.

BMDL : intersection with the BMR and the upper (or lower for inhibition) 90% CI on the model. BMDL was estimate by BMD-z_{95%}xSD with z ~ N(0,1)⁴; we used the *delta-method* to compute SD and to evaluate CI on the model.

Model selection: For each gene, choice between linear linear models with *nls()* function; for the delta-method we and non-linear models was based on Schwarz criterion (BIC). used *deltamethod*() function.

Results

• Genes data were log normalized (quantile normalisation⁵) and after a QC control 32,944 genes were retained.

Linear dose-response relationship

• A significant linear change from baseline in gene behavior was detected for **6,343** genes (19.2%): **3,304** stimulations (52%) and **3,039** inhibitions (48%).

Non-Linear dose-response relationship

Non linear model for stimulation behavior:

Table IIa. NON-LINEAR STIMULATION MODELS				
MODEL	NAME	CONVERGENCE	# STIMULATION	
Exponential	M1	2,352 (71.2%)		
Emax	M2	2,706 (81.9%)	3,304	
Logistic	M4	2,697 (81.6%)		

For 2,325 genes, it was possible to achieve convergence for the 3 non-linear models and at least one model for 2,732 genes.

Non linear model for inhibition behavior:

Table IIb. NON-LINEAR INHIBITION MODELS					
MODEL	NAME	CONVERGENCE	# INHIBITION		
Exponential	M1	2,336 (76.9%)			
Emax	M3	2,451 (80.7%)	3,039		
Logistic	M5	2,440 (80.3%)			

For 2,180 genes, it was

BMD and BMDL estimation:

• For 96.8% of estimated models, residuals were normal and for 3.2% bootstrap was used to estimate the quantile.

Figure II. BMD analysis for stimulation and inhibition behavior

• Example for 2 genes:

Model selection:

	Table III. CHOICE OF THE BEST MODEL (Shwarz criterion)						
	Linear	Exponential	Emax		Logistic		TOTAL
	M0	M1	M2	M3	M4	M5	
STIMULATION	2,159	80	532	-	533	-	3,304
	65.4%	2.4%	16.1%	-	16.1%		
INHIBITION	2,484	182	-	303	-	70	3,039
	81.7%	6%	-	10%	-	2.3%	
TOTAL	4,643	262	835		603		6 2 1 2
	73.2%	4.1%	13.2	2%	9.	5%	0,343

 Linear and Emax models were the main preferred significant models, over exponential and logistic shape.
 References

possible to achieve convergence for the 3 nonlinear model and at least one model for 2,598 genes.

- 0.2
 1
 6
 30
 0
 0.2
 1
 6
 30

 Dose (mg/kg body weight day) (Log scale)
 Dose (mg/kg body weight day) (Log scale)
 0
 0
 0.2
 1
 6
 30
- Good estimation of the BMD at the intersection but not all the time.

Conclusion and perspectives_

- An algorithm has been created to model dose-effect relationship toxicity expressed by DNA chips.
- This algorithm allows to characterizing the benchmark doses for a large set of genes.
- Running time : \sim 6 hours.

(1) Russel S. Toxicological Sciences, 98: 240-248; 2007; (2) Benjamini Y, Hochberg Y: Crit Rev Toxicol 57: 289-300; 2003. (3) Benchmark Dose Software (BMDS) Version 2.1, User's Manuel; 2009. (4) Moerbeek M. Risk Analysis, 24: 2004. (5) B. M. Bolstad, BIOINFORMATICS; 2003.