Supporting drug development as a Bayesian in due time?!

Sebastian Weber¹

¹Advanced Exploratory Analytics, Novartis Pharmaceuticals AG Basel, Switzerland

Background

Bayesian approaches can offer several interesting advantages for a pharmacometrician

• Formal framework to add external information

Objectives

At the example of combining aggregate and individual patient data in the context of a non-linear population model the goal is to illustrate different strategies which turn running times of days into less than one hour.

Conclusion

 Major improvements in the execution times for ODE based pharmacometrics models through the use of multiple CPUs on a MPI cluster or via threads on a local machine

D NOVARTIS

- through the use of priors
- Additional control over model fit in terms of regularization by weakly-informative priors which aids in numerical stability
- Has advantages in terms of propagating uncertainty through the analysis (avoids the need for bootstraps)
- Available open-source tools such as Stan [1] allow for a vast flexibility in terms of modeling choices which is relevant for specialty applications
- ... but there is no free lunch:
- Bayesian approaches oftentimes lead to excessive computation times which render the approach practically in-applicable for iterative modeling

The example chosen was key for a Novartis development program and did require the extension of an existing non-linear population model for 1300 patients to also include aggregate data from the literature, see [2].

The key steps taken to expedite the computations are

- Analytical shortcuts
- Approximation of the turn-over ordinary differential equation (ODE)
- Within-chain parallelization using the Message
 Passing Interface (MPI) in the upcoming Stan 2.18
 version (machine local threads are an alternative)
- The performance gain for ODE based models does scale linearly over multiple orders of magnitude with high efficiency – 61x speedup using 80 cores on 8 machines.
- Analytical shortcuts, which avoid the need for an ODE integrator, can significantly reduce computation times already. However, these require a high level of technical skills and need a case-by-case implementation.

Outlook:

- MPI and threading based within-chain parallelization are becoming available in the upcoming 2.18 version of Stan
- User-friendly pharmacometric Stan libraries like Torsten will make these function readily accessible.

Methods

Data

- Internal patient trial data included >1300 patients from 3 studies
- Monthly observation of pharmacodynamic effect
- External information in literature reported on 2400 patients which are enrolled into 2 studies with each 4 arms and on average 300 patients per arm.

Model

- Latent one-compartment model due to the unavailability of concentration measurements.
- Stimulation of kin turn-over model linking the latent

Results

Reduction in runtime for ODE based model using MPI:

Wallclock decrease using MPI

ODE model; 1300 subjects; 20, 40 & 80 core run in blocks of 10; dashed line is theoretical

60 -	63.8h				

Bayesian Aggregation of Average Data (BAAD) [2]

- Expands an existing model $p(\phi|y)$ to include likelihood contribution of external summary data $p(\overline{y}'|\phi, \delta)$ $p(\phi|y) \rightarrow p(\phi, \delta|y, \overline{y}') \propto p(\phi|y) p(\delta) p(\overline{y}'|\phi, \delta)$
- Requires assumption that external data differs only in a few parameters, but many model parameters can be shared

Example simulation data set for BAAD

- pharmacokinetic model to the pharmacodynamic effect.
- Runtime of ODE model in Stan 2.5 days on full dataset
- Approach is simulation based which increases numerical burden substantially (in addition to already 2.5 days runtime!)

Parallelized Stan Program (using MPI or threading)

, data { int<lower=1> N; real y[N,5]; } transformed data { int x_i[N,0]; } parameters {

Relative Speedup using MPI vs 1 core

ODE model; 1300 subjects; 20, 40 & 80 core run in blocks of 10; dashed line is theoretical

Analytic approximation of turn-over ODE

```
int<lower=1> N;
  real y[N,5];
parameters {
  real mu;
  real<lower=0> sigma;
  real<lower=0> omega;
  vector[N] theta;
model {
  // data likelihood
                                   y_i | \theta_i, \sigma \sim \text{Normal}(\theta_i, \sigma^2)
  for(i in 1:N)
    y[i] ~ normal(theta[i], sigma);
  // priors
  mu ~ normal(0, 10);
  omega ~ normal(0, 1);
  theta ~ normal(mu, omega); \theta_i | \mu, \omega \sim \text{Normal}(\mu, \omega^2)
  sigma ~ normal(0, 1);
                                                                        sigma ~ normal(0, 1);
```

```
parameters {
   real mu;
   real<lower=0> sigma;
   real<lower=0> omega;
   vector[N] theta;
}
model {
   vector[1] shared = [ sigma ]';
   vector[1] unit[N];
   for(i in 1:N) unit[i,1] = theta[i];
   // data likelihood
   target += map_rect(unit_logLik, shared, unit, y, x_i);
   // priors
   mu ~ normal(0, 10);
   omega ~ normal(0, 1);
   theta ~ normal(mu, omega);
```

Due to a slow elimination half-life of 9days it is possible to approximate the pharmacokinetic concentration with a stepwise constant function. A step-wise constant input to a turnover ODE can be solved (step-wise) using an analytic solution.

Wallclock decrease using MPI Analytical model; 1300 subjects; single machine; dashed line is theoretical speedup

References: [1] Stan Development Team (2018). Stan: A C++ library for probability and sampling.

[2] Annals of Applied Statistics. 2017. Weber et al.

Poster presented at the Population Approach Group Europe (PAGE) Meeting, May 29th - June 1st, 2018, Montreux, Switzerland.