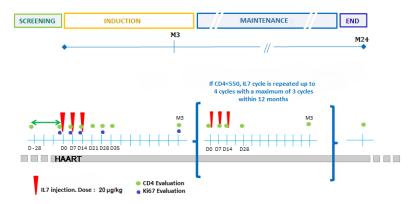
Use of mathematical modeling for optimizing and adapting immunotherapy protocols in HIV-infected patients

C. $\mathsf{Pasin}^{1,2,3*}$, L. $\mathsf{Villain}^{1,2,3*}$, F. $\mathsf{Dufour}^{4,5}$, D. $\mathsf{Commenges}^{1,2,3}$, M. $\mathsf{Prague}^{1,2,3}$, R. $\mathsf{Thi\acute{e}baut}^{1,2,3}$

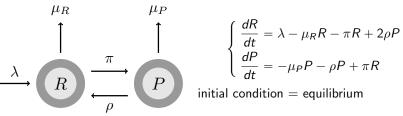
¹INRIA Bordeaux Sud-Ouest, SISTM team, Talence, France
²Univ. Bordeaux, centre INSERM U1219 BPH, Bordeaux, France
³Vaccine Research Institute, Créteil, France
⁴INRIA Bordeaux Sud-Ouest, CQFD team, Talence, France
⁵INP, IMB, Bordeaux, France

PAGE meeting, Montreux, May 29 2018



Context

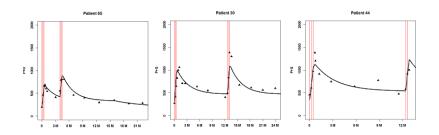
- Infection by the Human Immunodeficiency Virus (HIV) compromises the immune system: depletion of CD4⁺ T lymphocytes
- Combination antiretroviral therapies (cART)
 improvment of patient's survival
- Some HIV-infected patients under cART are unable to recover normal CD4⁺ T cell levels
- Immune therapy using interleukine 7 (IL7) complements cART:
 - ▶ Phase I trials and observational studies ⇒ safety and beneficial effect of IL7 injections
 - ▶ Phase I/II human clinical trials (INSPIRE 1, 2 and 3 studies) ⇒ repeated cycles of 3 weekly IL7 injections help maintaining CD4⁺ T cells levels above 500 cells/µL [Levy et al. (2012), Thiébaut et al. 2016]


INSPIRE studies

- ullet Total of 128 HIV-infected patients under cART with CD4 levels between 100-400 cells/ μ L and undetectable viral load for at least 6 months
- Cycles of 3 weekly IL7 injections of dose $20\mu g/kg$ (21 received dose 10 or 30)
- Regular measurements of CD4⁺ levels and proliferation marker Ki67
- ullet Visits every three months. CD4 $^+$ levels < 550 cells/ μ L \implies new cycle
- Total duration of the studies: between 12 and 24 months

Mechanistic model

Dynamics of CD4 $^+$ T lymphocytes, resting (R) or proliferating (P) [Thiébaut et al. (2014)]



- Parameters estimation with a population approach [Prague et al. (2013)]
- ullet Identification of random effects on parameters λ and ho
- IL-7 injection: effect on the proliferation rate π (differs for each injection within a cycle) [Jarne et al. (2017)]

$$\tilde{\pi}^{i} = \tilde{\pi}_{0} + \beta_{\pi}^{(n)} d_{i}^{0.25} \mathbb{1}_{\{t \in [t_{ini}^{i}, t_{ini}^{i} + \tau^{i}]\}}$$

d: injected dose, $n \in \{1,2,3\}$: injection of the cycle, τ : time of effect of the injection

Predictive ability of the model

- Main issue: criterion in the original protocol (decision to begin a new cycle when CD4 levels $< 550 \text{ cells}/\mu$) inadequate for some patients
- Next step: optimizing and adapting protocols of injections
- Aim: maintaining the CD4 levels > 500 cells/ μ L without using too many injections

Pipeline

Parameters estimation

Estimation of the ODE parameters θ using INSPIRE data \implies determination of a posterior distribution.

Inclusion of a new patient

Estimation of its individual parameters using the first observations.

Optimal control approach

- Use of optimal control theory to determine an optimal strategy of injections from a cost function.
- Stochasticity attributed to the biological process.

Bayesian approach

- Treatment decision is adapted at each new observation, by updating individual parameters estimation with MCMC algorithm.
- Stochasticity attributed to the uncertainty on the parameters estimation.

Assessment of the methods

Parameters estimation

Estimation of the ODE parameters θ using INSPIRE data \implies determination of a posterior distribution.

Pseudo-patients parameters generation

Sample N parameter sets from the posterior distribution of θ .

Optimal control approach

- Use of optimal control theory to determine an optimal strategy of injections from a cost function.
- Stochasticity attributed to the biological process.
- N=50, horizon = 1 year

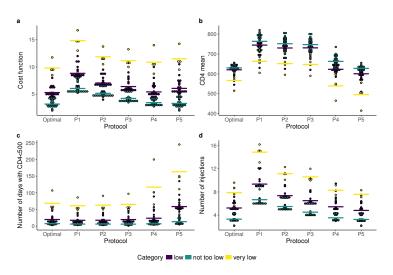
Bayesian approach

- Treatment decision is adapted at each new observation, by updating individual parameters estimation with MCMC algorithm.
- Stochasticity attributed to the uncertainty on the parameters estimation.
- N=150, horizon = 2 years

Optimal control: proof-of-concept

- Objective: to determine actions (injection of not and choice of dose) at given time points over an horizon of time
 - ⇒ impulse control problem in the optimal control theory
- Two-steps method:
 - Developing an adapted mathematical model for the process: Piecewise Deterministic Markov model [Davis (1984)]
 - ▶ Using the theory of optimal control from [Costa et al. (2016)] to solve the impulse control problem by iteration of an integro-differential operator
 - computation of the optimal cost
 - determination of an optimal strategy of injections
 - comparison of the obtained optimal strategy to other clinical protocols

C. Pasin, F. Dufour, L. Villain, H. Zhang, R. Thiébaut. Controlling IL-7 injections in HIV-infected patients. To appear in *Bulletin of Mathematical Biology*

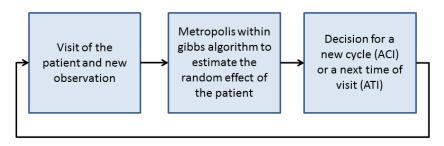

Optimal control: method

- ullet Jump in the process : modification of parameter π
 - ▶ Deterministic: CD4 levels < 500 cells $/\mu$ L \implies IL7 injection
 - ightharpoonup Random: stochastic time au of effect of an IL7 injection

$$\tilde{\pi} = \tilde{\pi}_0 + \beta_{\pi}^{(n)} d^{0.25} \mathbb{1}_{\{t \in [t_{inj}, t_{inj} + \tau]\}}$$

- Cost function: combination of two criteria
 - ▶ Time spent with CD4 levels < 500 cells/ μ L
 - Number of injections realized
- Application of the method to determine the optimal strategy of 50 pseudo-patients on a reduced model:
 - ▶ 2 possible doses (10,20)
 - horizon of 1 year

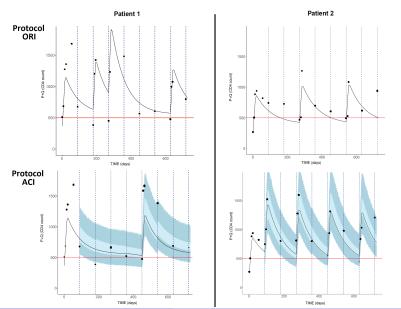
Optimal control: results on 50 pseudo-patients

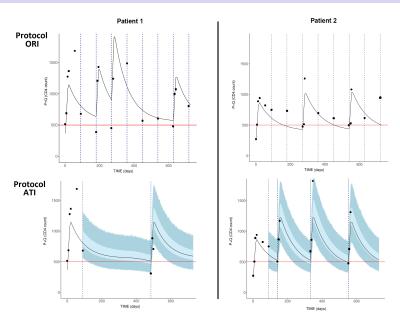


Protocols. P1: 3-injections cycles. P2: 3-injections cycle then 2-injections cycles. P3: 2-injections cycles. P4: 2-injections cycles then 1-injection cycles. P5: 1-injection cycles.

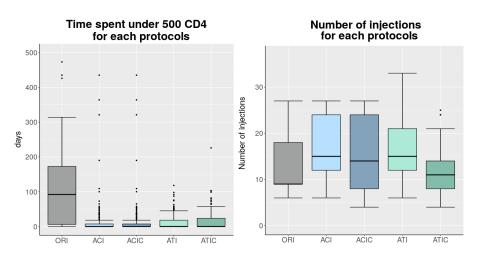
Optimal control: conclusion

- Development of a dynamic programming method to apply the theory of optimal control in a biological framework
- Intuitive optimal strategy: first cycles of 2 injections to increase the number of CD4⁺ then cycles of 1 injection to maintain the CD4 levels
- Limitations:
 - One year horizon only due to computational time
 - Main hypothesis: known individual parameters


Bayesian approach: pipeline


- ACI: Adaptive Criterion of Injection. Based on the predicted risk to have CD4 levels < 500 before the next visit (at 3 months)
- ATI: Adaptive Time of Injection. Based on the predicted time at which CD4 levels will reach 500.
- Both criteria: computed from estimated individual parameters, obtained thanks to observations

L. Villain, D. Commenges, C. Pasin, M. Prague, R. Thiébaut. Adaptive protocols based on predictions from a mechanistic model of the effect of IL7 on CD4 counts. *Statistics in Medicine* (under revision).


Bayesian approach: protocols comparison

Bayesian approach: protocols comparison

Bayesian approach: results on 150 pseudo-patients

Discussion

- Possibility to adapt the schedules of injections with both approaches
- Specific context: very good predictive ability of the model
 - Deterministic model
 - ▶ Only 2 markers needed
 - Short phase of learning
- Limitations of the optimal control approach:
 - Does not consider uncertainty on parameters
 - Requests large computing time
- But could be more adapted in a case where deterministic model fails at describing the biological process and stochastic model is needed
- Statistical approach: very powerful in this context
- Prospects:
 - Other biological applications
 - Evaluation of the adaptive strategy on clinical outcomes in future trials

Acknowledgments

- INRIA SISTM / CQFD teams and other collaborators
- Vaccine Research Institute (Y Levy, JD Lelievre)
- INSPIRE Study group (JP Routy, I Sereti, M Fischl, P Ive, RF Speck, G D'offizi, S Casari, S Foulkes, V Natarajan, T Croughs, Jean-F Delfraissy, G Tambussi, MM Lederman)

