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Objectives

General anesthetics produce dose-dependent effects on

the electroencephalogram (EEG), causing an increase in

power combined with a decrease in average EEG fre-

quency. [1] A novel EEG-derived parameter is the per-

mutation entropy (PE) of the EEG. [2] Important advan-

tages are its robustness under eye blinks, and its ease of

computation. The permutation entropy quantifies the

probability distribution of motifs present in the signal.

Because of the ordinal (counting) nature of the PE, it

is dominated by the presence of high EEG frequencies,

even if they have quite small amplitudes.

Anesthetic concentration-effect data fits often show

systematic misfits, due to correlated residuals, which

could lead to biased standard errors of parameter es-

timates and false conclusions from statistical tests.

Kalman filters may be constructed to separate measure-

ment and process noise. [3]

Study objectives were:

• To construct a pharmacokinetic-pharmacodynamic

(PK-PD) model, including a Kalman filter, to analyze

isoflurane concentration-permutation entropy data;

• To gain more insight into the effects of the incorpora-

tion of a Kalman filter, by fitting models with and with-

out a Kalman filter to simulated data;

• To study whether observed gender differences in pa-

rameters values from a two-stage analysis had statisti-

cal significance.

Methods

Calculation of Permutation Entropy

The following figure illustrates the calculation of the

permutation entropy (using Shannon’s uncertainty for-

mula):
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Figure 1: Lower panel: extraction of ordinal patterns

from the EEG signal. As the algorithm moves sequen-

tially through the EEG signal, the sections (‘‘motifs’’

consisting of three data points’ length) are classified

as one of the six possible patterns, depicted in the

middle panel. Upper panel: histogram of the occur-

rence of each motif in the signal. The dashed-line mo-

tif demonstrates the operation of the τ = 2 lag.

Pharmacodynamic Model

The data from 14 patients (7M/7F) were analyzed with a

pharmacodynamic model [1] consisting of a hypotheti-

cal effect compartment and a sigmoid Emax model with

output E(t).

Methods (continued)

The Extended Kalman Filter

The Extended Kalman filter is a method to track the

state of a (linearized) nonlinear system in the presence

of measurement and system noise. [3] The system state

x and a function g(x) need to be defined which de-

scribes how it evolves in time, how it is affected by an

input, and how it propagates to the output. Two ver-

sions were constructed:

•Version A assumes that colored noise is present on the

model output, albeit limited by Emax ≤ 1 and Emin ≥ 0.

With

y(t) = log

(

1− E(t)

E(t)

)

, (1)

where E(t) is the output of the sigmoid-Emax model,

and

dx = g(x)dt + ν = −
x(t)

τ
dt + ν, (2)

where x is the state of the system, ν is system noise,

and τ is a time constant, the output is given by

E′(t) =
1

1+ exp(x +y)
+ ǫ. (3)

So E′(t) resembles the original E(t), but contains col-

ored noise, and lies in interval (0,1) (if ǫ = 0).

• Version B assumes that noise enters the system at

the input. Because the noise term ν has to be normally

distributed, it was added to the logarithm of concentra-

tion, and then

dx =
1

τ

(

γ · log

(

CET(t)+ CET,0

C50

)

− x

)

dt + ν (4)

and the output is given by

E′(t) = Emin +
1− Emin

1+ exp(x)
+ ǫ, (5)

where CET,0 a parameter that yields finite values of the

logarithm and replaces Emax.

Simulations

The model incorporating Kalman filter version B was

used to generate 1000 sets of artificial data of 100 in-

dividuals. These data were fitted by the same model to

check that the parameter estimation is consistent, and

by the model without Kalman filter.

Results

The population analysis of the permutation entropy

data without Kalman filter resulted in an estimate of

γ ≈ 6.8 and interindividual variance of ≈ 2.3. With

Kalman filter A these increased to ≈ 22 and 10, re-

spectively. This means that PE as a measure effectively

reduces to an on/off indicator. The following table

presents the results employing Kalman filter B:

Par. Est. SE ω2 SE

t1
2
,ke0

3.50 0.25 - -

γ 2.60 0.68 0.036 0.020

C50 0.64 0.20 0.021 0.011

CET,0 0.28 0.16 - -

Emin 0.699 0.008 0.017 0.007

γ and its interindividual variance decreased to useful

values. Figure 2 shows that PE is still sensitive to higher

isoflurane concentrations (dark green line) instead of

being saturated (dark red line). High-frequency EEG

and/or EMG activity that elevated the PE seems to be

filtered out. Earlier observed gender differences in t1
2
,ke0

disappeared.

Results (continued)
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Figure 2: PE data fits without Kalman filter (red line)

and with Kalman filter B (green line).

The simulation study showed that all parameters (and

SEs) are well estimable (cf. previous table):

Par. Est. SD med.(SE) ω2 SD med.(SE)

t1
2
,ke0

3.46 0.091 0.093 - - -

γ 2.49 0.18 0.18 0.0328 0.0066 0.0064

C50 0.622 0.051 0.051 0.0218 0.0050 0.0050

CET,0 0.270 0.039 0.040 - - -

Emin 0.699 0.003 0.003 0.0164 0.0025 0.0024

Interindividual variability was overestimated when the

data were fitted with a model without Kalman filter:

Par. Est. SD med.(SE) ω2 SD med.(SE)

t1
2
,ke0

3.71 0.23 0.22 0.288 0.068 0.055

γ 2.67 0.22 0.21 0.63 0.15 0.13

C50 0.531 0.019 0.017 0.082 0.021 0.018

Emax 0.961 0.002 0.002 0.296 0.044 0.043

Emin 0.697 0.006 0.006 0.056 0.014 0.012

Conclusions

•While the PE is insensitive to eye blinks, it is sensitive

to high frequency components present in the EEG just

before loss of consciousness. This results in a steep

concentration-effect relationship. Analysis of EEG data

with a Kalman filter accentuated or filtered out this phe-

nomenon, depending on the postulated location of pro-

cess noise.

• It should be noted that this artifact filtering is only

possible if the anesthetic concentration is known.

• The model parameters, and hence the permutation en-

tropies at different levels of anesthetic concentration,

were not dependent on the gender of the patients.

• Process noise may substitute for model inadequacies,

in this case an EEG effect which was (in the model) not

related to anesthetic concentration. The confounding

effect may need to be scaled, due to nonlinearities, to

the level of the real process noise.

• Without Kalman filtering, interindividual variabil-

ity may be biased upward by intra-individual process

noise.
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