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Study design

 Investigator initiated trial (Medical University of Vienna)

 Therapeutic drug monitoring (TDM) data: 122 IBD

patients (s. Tab. 1 and Fig. 2)

 Dosing schedule:

 Median (range) dose: 400 mg (100-1300) ~ 5.6 mg/kg

(1.2-10.8)

 Median (range) time since last dose of the available

plasma samples: 5.57 weeks (0.57 – 12.4; s. Fig. 1)

 Infliximab (IFX) is an anti-tumour necrosis factor α monoclonal antibody used 

to treat inflammatory bowel disease (IBD)

 In up to 60% of patients loss of response (LOR) develops over time [1]

 LOR has been related to low IFX plasma concentrations [1]

 A 2-CMT model with linear elimination adequately

described IFX PK in the study population (s. Tab 2),

as demonstrated by visual predictive check (s. Fig. 3)

 Using the frequentist prior approach enabled adequate description of IFX PK from the 

sparse TDM data

 In addition to ADA status, disease activity (serum albumin concentration and disease activity 

index), body weight and use of immunomodulators have significant influence on CL

 As a next step the developed PK model will be linked

with the PD data in order to combine the available

knowledge in a PKPD model that is to contribute to

rational use of IFX in treatment of IBD

Objectives

 The aim of the study is to investigate the impact of patient and 

disease characteristics on IFX exposure in order to identify the 

subpopulations at risk of therapy failure and provide a tool for 

improvement of IFX therapy in patients with IBD.

Table 1. Summary of patient characteristics (npatients = 122).

Categorical patient characteristic Number of patients (%)

Sex (n=122)

Male 63 (51.6)

Female 59 (48.4)

Diagnosis (n=122)

Crohn’s disease (CD) 90 (73.8)

Ulcerative colitis (UC) 31 (25.4)

Indeterminable 1 (0.8)

Age at diagnosis of CD (n=89)

≤ 16 years 11 (12.3)

17-40 years 66 (74.2)

> 40 years 12 (13.5)

Crohn’s disease location (n=89)

Ileal 10 (11.2)

Colonic 21 (23.6)

Ileocolonic 58 (65.2)

Concomitant therapy with immunomodulators (n = 122)

Yes * 23 (18.8)

No 99 (81.1)

Smoking (n=119)

Non-smoker 41 (34.4)

Current smoker 46 (38.7)

Ex-smoker 32 (26.9)

Continuous patient characteristic [unit] Median (min, max)

Body weight [kg] 70 (47-115)

Height [cm] 171 (155; 190)

Body mass index [kg/m2] 23.2 (14.5; 41.7)

* On at least one occasion

Modelling of the IFX PK

 Nonlinear mixed effect modelling approach

(NONMEM 7.3, PsN 4.4, Pirana 2.9.4, R

3.2.4, Rstudio 1.0.143)

 Sparse data  the frequentist prior

approach using a published model as a

prior [2] with the assumption of normal and

inverse-Wishart distribution for fixed- and

random-effect parameters, respectively
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Figure 3. Prediction-corrected visual predictive check (pcVPC) for PK model. Blue

dots: observed IFX concentrations; blue lines: median (solid) and 5th and 95th

percentiles (dashed) of observations; red lines: median (solid) and 5th and 95th

percentiles (dashed) of the simulations; red shaded areas: 90% confidence

intervals of the median (dark) and around quantiles (light) of the simulations.

Table 2. Parameter estimates of the PK model

supported by prior information and utilised prior

estimates.

Parameter [unit] Estimate (RSE, %) 

[shrinkage, %]

Prior model 

estimate [2]

𝐶𝐿𝑝𝑜𝑝 [L/d] 0.288 (4) -

𝑉1,𝑝𝑜𝑝[𝐿] 3.66 (1) 3.67

𝑄𝑝𝑜𝑝 [L/d] 0.173 (8) 0.158

𝑉2,𝑝𝑜𝑝[𝐿] 1.30 (4) 1.37

𝜃𝐴𝐷𝐴_𝐶𝐿 0.863 (10) -

𝜃𝐻𝐵𝐼_𝐶𝐿 0.0303 (31) -

𝜃𝐼𝑀𝑀_𝐶𝐿 -0.174 (23) -

𝜃𝐴𝐿𝐵_𝐶𝐿 -0.0163 (32) -

𝜃𝐵𝑊_𝐶𝐿 0.412 (34) -

𝜔𝐶𝐿 [%𝐶𝑉] 40.8 (7) [6] -

𝜎𝑝𝑟𝑜𝑝 [%𝐶𝑉] 31.5 (5) [13] -

𝜎𝑎𝑑𝑑 [𝑆𝐷, ൗ
𝜇𝑔

𝑚𝐿]
0.543 (20) [13] -

ADA: anti-drug antibodies; ALB: serum albumin

concentration; BW: body weight; CV%: coefficient of

variation; HBI: Harvey-Bradshaw index; IMM:

concomitant therapy with immunomodulators; SD:

standard deviation.

 Nonlinear CL component was negligible

 Due to the data sparseness (high η-shrinkage for IIV

of V1 and V2) covariate analysis was performed

exclusively on CL

 The most influential covariate was ADA status,

indicating ~2 times higher CL in presence of ADA

Figure 1. Distribution of samples per time since last dose.

Figure 2. Concentration-time plot of the available

sparse PK data.

 Inclusion of all significant covariates reduced IIV by ~23 % (from 52.8%CV to 40.8%CV)


