Modeling a Composite Score in Parkinson’s Disease using Item Response Theory

Gopichand Gottipati*, Mats O. Karlsson & Elodie L. Plan
Pharmacometrics Research Group
Uppsala University, Sweden

gopichand.gottipati@fambio.uu.se
Parkinson’s Disease

- Parkinson’s disease is a progressive neurodegenerative brain disorder characterized by
 - loss of neurons in substantia nigra
 - decrease in the dopamine levels

- Parkinson’s disease is known to affect approximately 6.3 million people worldwide¹

- Movement Disorder Society (MDS) - sponsored revision² of the Unified Parkinson’s Disease Rating Scale (UPDRS)

¹. European Parkinson’s Disease Association (http://www.epda.eu.com/en/)
². Goetz et al. Move Disord. 2007; 22(1) 41-7
Overall, there are 68 items – 66 ordered categorical and 2 binary

Higher total score (range: 0 – 267) indicates more severe disease

Part I
• Non-motor aspects of experiences of daily living
 • e.g. cognitive impairment

Part II
• Motor aspects of experiences of daily living
 • e.g. tremors

Part III
• Motor examination
 • e.g. finger tapping – right & left hands

Part IV
• Motor complications
 • e.g. functional impact of dyskinesias
Data

- Parkinson Progression Markers Initiative (PPMI) Database:
 - Longitudinal MDS-UPDRS data:
 at baseline(0), up to 12 visits (60 months) ➔ 255023 observations

Healthy Controls
(n = 196)
Age ≥ 30 years
No first degree blood relative with Parkinson’s disease

De Novo Parkinson’s Disease Subjects
(n = 423)
Diagnosed ≤ 2 years
Not taking any medications for Parkinson’s disease

Subjects With Scans Without Evidence of Dopaminergic Deficit (SWEDD)
(n = 64)
Consented as Parkinson’s patients
PPMI – Item Responses
Item 23

Over the past week, have you usually had a shaking or tremor?

0: Normal
Not at all. I have no shaking or tremor

1: Slight
Shaking or tremor occurs but does not cause problems with any activities

2: Mild
Shaking or tremor cause problems with only a few activities

3: Moderate
Shaking or tremor cause problems with many of my daily activities

4: Severe
Shaking or tremor cause problems with most of my activities
Over the past week, have you usually had a shaking or tremor?

0: Normal
1: Slight
2: Mild
3: Moderate
4: Severe
Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable.
Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable.
Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable.

It has been applied in:
- Alzheimer's (ADAS-cog)
- Multiple Sclerosis (EDSS)
- Schizophrenia (PANSS)

Aims of the project

- To explore IRT model components and investigate MDS-UPDRS features
- To describe MDS-UPDRS longitudinal changes
- To provide a model for future design and analysis of trials in Parkinson’s Disease
- To explore model building strategies and diagnostics for IRT
Model building strategy

- Subjects of De Novo cohort was used as reference population
 - Healthy controls and SWEDD cohort modeled by shift in (distribution of) disability

- Estimation of ICC with shifts
 - Fix the ICC
 - Estimate the longitudinal changes

- Simultaneous estimation of ICC and longitudinal changes
Structural IRT model

Model parameters divided into
- Item specific parameters \(- a_j, b_j \ldots\) (discrimination and difficulty)
- Subject specific parameters \(- D_i\) (disability)

Ordered categorical \((0 - 4/5)\)

\[
P(Y_{ij} \geq k) = f_j(D_i) = \frac{e^{a_j(D_i - b_j)}}{1 + e^{a_j(D_i - b_j)}}
\]

\[
P(Y_{ij} = k) = P(Y_{ij} \geq k) - P(Y_{ij} \geq k+1)
\]

Binary \((0/1)\)

\[
P(Y_{ij} = 1) = f_j(D_i) = \frac{e^{a_j(D_i - b_j)}}{1 + e^{a_j(D_i - b_j)}}
\]

\[D_i = \eta_i\]

\[D_i(t) = D_{i,0} + \text{Slope}_i \times t\]

De Novo cohort: \(D_{i,0} \sim N(0, 1)\)

Other cohorts:
- Shift in baseline
- Different slopes
Item Characteristic Curve

Item 23 – Distribution of item responses
Item Characteristic Curve

Item 23 – Individual probabilities
Results

Shift in baseline disability for a typical individual

- Healthy Controls
- SWEDD
- De Novo Parkinson's

16
Results

Longitudinal changes – *De Novo cohort*
Results

Longitudinal changes – De Novo cohort
Results

Longitudinal changes – De Novo cohort
Results

Longitudinal changes – De Novo cohort
Diagnostics

VPC of longitudinal model – All cohorts

Healthy Controls

De Novo PD Subjects

SWEDD
Diagnostics

Item 23 - Longitudinal model – De Novo cohort
For the i^{th} subject, j^{th} (23rd) item, $DV = 1$

Based on ICC
For i^{th} subject, j^{th} (23rd) item, $DV = 1$

Based on ICC

\[E_{ij} \text{ (weighted prediction)} = P1 \times 1 + P2 \times 2 + P3 \times 3 + P4 \times 4 \]

\[RES = DV - E_{ij} \]
For i^{th} subject, j^{th} (23rd) item, $DV = 1$

Based on ICC

\[E_{ij} \text{ (weighted prediction)} = P1 \times 1 + P2 \times 2 + P3 \times 3 + P4 \times 4 \]

\[= (1.289) \]

\[RES = DV - E_{ij} \]

\[(-0.289) \]
Correlation among item responses

• Already handled by the IRT model, all item responses are related to the same latent variable - disability

Certain item responses may be more (/less) correlated than what the model predicts

• Investigate multiple latent variables by exploring correlation of residuals among the item responses
Correlation of residuals

All data from De Novo cohort ONLY – One latent variable
Correlation of residuals

All data from De Novo cohort ONLY – One latent variable

Alternating right & left
(30 – 43) & (50 – 57)
Diagnostics – Residuals

All data from De Novo cohort ONLY – One latent variable
Diagnostics – Residuals

All data from De Novo cohort ONLY – **Four latent variables**
• Simultaneous estimation of IRT parameters with the longitudinal changes described the data well.
 – The IRT model simulations for the total score and at item level were in good agreement with observations

• Model-based diagnostics based on the residuals can be used as a tool to assess the need for multiple latent variables to improve the IRT models
Future direction

Disease/patient population

This framework may be then extended:

– To characterize the disease progression in Parkinson’s
– As a basis for design and analysis of trials in Parkinson’s
– Identifying false positive patients (e.g., misdiagnosed Parkinson’s subjects) such as SWEDD
Acknowledgement

- PPMI a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and industry partners

- Pharmacometrics research group, Uppsala University, Sweden