

Modeling a Composite Score in Parkinson's Disease using Item Response Theory

PAGE - 2015

Gopichand Gottipati*, Mats O. Karlsson & Elodie L. Plan Pharmacometrics Research Group Uppsala University, Sweden

UPPSALA UNIVERSITET

Parkinson's Disease

- Parkinson's disease is a progressive neurodegenerative brain disorder characterized by
 - loss of neurons in substantia nigra
 - decrease in the dopamine levels
- Parkinson's disease is known to affect approximately 6.3 million people worldwide¹
- Movement Disorder Society (MDS) sponsored revision² of the <u>Unified Parkinson's Disease Rating Scale</u> (UPDRS)

1. European Parkinson's Disease Association (<u>http://www.epda.eu.com/en/</u>)

2. Goetz et al. Move Disord. 2007; 22(1) 41-7

MDS-UPDRS

Composite Scale

	Part I	 Non-motor aspects of experiences of daily living e.g. cognitive impairment
	Part II	 Motor aspects of experiences of daily living e.g. tremors
	Part III	 Motor examination e.g. finger tapping – right & left hands
	Part IV	 Motor complications e.g. functional impact of dyskinesias

- Overall, there are 68 items 66 ordered categorical and 2 binary
- *Higher total score* (range: 0 267) indicates *more severe disease*

Data

- Parkinson Progression Markers Initiative (PPMI) Database:
 - Longitudinal MDS-UPDRS data: at baseline(0), up to 12 visits (60 months) → 255023 observations

PPMI – Item Responses

Response

5

Item 23

Over the past week, have you usually had a shaking or tremor?

- 0: Normal Not at all. I have **no shaking** or tremor
- 1: Slight Shaking or tremor occurs but **does not cause problems** with any activities
- 2: Mild Shaking or tremor cause problems with only a few activities
- 3: Moderate Shaking or tremor cause problems with many of my daily activities
- 4: Severe Shaking or tremor cause problems with most of my activities

Item 23

Over the past week, have you usually had a shaking or tremor?

Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable

9

Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable

Item Response Theory

It relates the probability of responses to items in an assessment to an underlying latent (hidden) variable

It has been applied in

- Alzheimer's¹ (ADAS-cog)
- Multiple Sclerosis² (EDSS)
- Schizophrenia³ (PANSS)

- 1. Ueckert S., et al, Pharmaceutical Research 2014; 31(8):2152-2165.
- 2. Kalezic A., et al, PAGE 22 (2013) Abstract 2903
- 3. Krekels E., et al, PAGE 23 (2014) Abstract 3145

Disease/Patient Population Methodology

- To explore IRT model components and investigate MDS-UPDRS features
- To describe MDS-UPDRS longitudinal changes
- To provide a model for future design and analysis of trials in Parkinson's Disease
- To explore model building strategies and diagnostics for IRT

Model building strategy

- Subjects of De Novo cohort was used as reference population
 - Healthy controls and SWEDD cohort modeled by shift in (distribution of) disability

Account for longitudinal changes

- Estimation of ICC with shifts
 - Fix the ICC
 - Estimate the longitudinal changes
- Simultaneous estimation of ICC and longitudinal changes

Structural IRT model

Model parameters divided into

- Item specific parameters $-a_{j}$, b_{j} ... (discrimination and difficulty)
- Subject specific parameters D_i (disability)

$$\begin{array}{c} 66x \\ \hline D_{i} = \eta_{i} \\ \hline D_{i} = \eta_{i} \\ \hline D_{i} = \eta_{i} \\ \hline D_{i}(t) = D_{i,0} + Slope_{i}^{*t} \\ \hline De \text{ Novo cohort: } D_{i,0} \sim N(0, 1) \\ \hline Other \text{ cohorts: } \\ \text{Shift in baseline } \\ \hline Different slopes \end{array} \qquad \begin{array}{c} 66x \\ P(Y_{ij} \geq k) = f_{j} (D_{i}) = \frac{e^{aj(Di - bj)}}{1 + e^{aj(Di - bj)}} \\ P(Y_{ij} \geq k) = P(Y_{ij} \geq k) - P(Y_{ij} \geq k+1) \\ P(Y_{ij} = 1) = f_{j} (D_{i}) = \frac{e^{aj(Di - bj)}}{1 + e^{aj(Di - bj)}} \\ P(Y_{ij} = 1) = f_{j} (D_{i}) = \frac{e^{aj(Di - bj)}}{1 + e^{aj(Di - bj)}} \\ \end{array}$$

Item 23 – Distribution of item responses

Item 23 – Individual probabilities

UPPSALA UNIVERSITET

Results

Shift in baseline disability for a typical individual

Longitudinal changes – **De Novo cohort**

UPPSALA

Longitudinal changes – **De Novo cohort**

Longitudinal changes – **De Novo cohort**

Longitudinal changes – **De Novo cohort**

Diagnostics

VPC of longitudinal model – All cohorts

UNIVERSITE

21

Diagnostics *Item 23 - Longitudinal model – De Novo cohort*

0 0 0 6 12 18 24 30 36 420 6 12 18 24 30 36 42 Time (months)

Item 23 – Individual probabilities

For ith subject, jth (23rd) item, **DV = 1** Based on ICC

Item 23 – Individual probabilities

Item 23 – Individual probabilities

Model-based diagnostics of ICC

Correlation among item responses

 Already handled by the IRT model, all item responses are related to the <u>same</u> latent variable - disability

Certain item responses may be more (/less) correlated than what the model predicts

 Investigate multiple latent variables by exploring correlation of residuals among the item responses

Correlation of residuals

All data from De Novo cohort <u>ONLY</u> – **One** latent variable

Correlation of residuals

All data from De Novo cohort <u>ONLY</u> – **One** latent variable

UNIVERSITE

Diagnostics – Residuals

All data from De Novo cohort <u>ONLY</u> – **One** latent variable

Diagnostics – Residuals

All data from De Novo cohort ONLY – **Four** latent variables

UPPSAL

Conclusions

Methodology

- Simultaneous estimation of IRT parameters with the longitudinal changes described the data well.
 - The IRT model simulations for the total score and at item level were in good agreement with observations
- Model-based diagnostics based on the residuals can be used as a tool to assess the need for multiple latent variables to improve the IRT models

Future direction

Disease/patient population

This framework may be then extended:

- To characterize the disease progression in Parkinson's
- As a basis for design and analysis of trials in Parkinson's
- Identifying false positive patients (e.g., misdiagnosed Parkinson's subjects) such as SWEDD

Acknowledgement

- PPMI a public-private partnership is funded by the Michael J. Fox Foundation for Parkinson's Research and industry partners
- Pharmacometrics research group, Uppsala University, Sweden