Population K-PD joint modeling of tumor size and CA 125 kinetics after chemotherapy in relapsed ovarian cancer (ROC) patients

Mélanie Wilbaux, B. You, E. Hénin, O. Colomban, G. Freyer, M. Tod

Therapeuti**C** Targeting in Oncology - EMR 3738 - Faculty of medecine Lyon Sud, France University Claude Bernard Lyon 1

> 21st PAGE meeting June 7th, 2012

Ovarian cancer (OC):

- Highest mortality rate among all gynecological cancers
- Majority of patients diagnosed at an advanced stage
- Primary debulking surgery followed by chemotherapy
- Majority of patients relapses

Ovarian cancer (OC):

- Highest mortality rate among all gynecological cancers
- Majority of patients diagnosed at an advanced stage
- Primary debulking surgery followed by chemotherapy
- Majority of patients relapses

-> Reliable clinical strategy for **early prediction** of treatment efficacy, tumor dynamics, and tumor resectability

CA 125 (Cancer Antigen):

- Serum marker of epithelial ovarian cancers
- Described by Bast *et al.* in 1981 ¹
- Topic of many studies to optimize the management of OC

[1] Bast et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest, 1981.

CA 125 (Cancer Antigen):

- Serum marker of epithelial ovarian cancers
- Described by Bast *et al.* in 1981 ¹
- Topic of many studies to optimize the management of OC

Variability in CA 125 and tumor size kinetics:

CA 125 (Cancer Antigen):

- Serum marker of epithelial ovarian cancers
- Described by Bast *et al.* in 1981 ¹
- Topic of many studies to optimize the management of OC

Variability in CA 125 and tumor size kinetics:

-> CA 125 kinetics modeling to consider inter- and intra-individual variability

1

Build a **population K-PD semi-mechanistic** model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

1

Build a **population K-PD semi-mechanistic** model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

2

Validate "externally" this model

4 / 20

Mélanie Wilbaux

1

Build a **population K-PD semi-mechanistic** model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

2

Validate "externally" this model

3

Assess the prognosis value of CA 125 on tumor dynamics

4 / 20

Mélanie Wilbaux

Patients and Methods Patients

• CALYPSO trial ²:

- Randomized, multicenter, phase III non-inferiority study
- Platinum-sensitive ROC patients
- Carboplatin Pegylated Liposomal Doxorubicin (CD) VS Carboplatin Paclitaxel (CP)

[2] Pujade-Lauraine et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum sensitive ovarian cancer in late relapse. J Clin Oncol, 2010.

Patients and Methods Patients

• CALYPSO trial ²:

- Randomized, multicenter, phase III non-inferiority study
- Platinum-sensitive ROC patients
- Carboplatin Pegylated Liposomal Doxorubicin (CD) VS Carboplatin Paclitaxel (CP)

• Data:

- 535 ROC patients
- Baseline covariates: age, weight, lesion size...
- 10 CA 125 concentrations and 4 tumor size values per patient
- Modeling during 500 days

5 / 20

Data splitting

CALYPSO trial

N = 535

Mélanie Wilbaux

Data splitting

Data splitting

Mélanie Wilbaux

K-PD semi-mechanistic model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

Drug kinetics

Tumor dynamics

CA 125 kinetics

K-PD semi-mechanistic model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

Tumor dynamics

CA 125 kinetics

UNIV LYON I

K-PD semi-mechanistic model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

CA 125 kinetics

K-PD semi-mechanistic model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

K-PD semi-mechanistic model describing tumor size and CA 125 kinetics in ROC patients after chemotherapy

Typical parameters and inter-individual variability estimated

Parameter	Unit	Estimate	RSE estimate	IIV	RSE IIV	Shrinkage
			(%)	(CV)	(%)	(%)
<i>K</i> 1	day^{-1}	0.054	4	0.63	5	26
Kin _{TS}	$mm.day^{-1}$	0.0894	9	15.00	5	38
Q50	IU	0.000306	16	1339.86	21	33
Kout _{TS}	day^{-1}	0.00228	8	535.09	5	29
Kin _{CA}	U.mL.day	5.32	9	0.31	4	16
K2	$mm^{-1}.day$	33.4	7	0.04	5	30
Kout _{CA}	day^{-1}	0.0307	4	23.19	5	36

Results

Typical parameters and inter-individual variability estimated

			\square		\bigcap	
Parameter	Unit	Estimate	RSE estimate	IIV	RSE IIV	Shrinkage
			(%)	(CV)	(%)	(%)
<i>K</i> 1	day^{-1}	0.054	4	0.63	5	26
Kin _{TS}	$mm.day^{-1}$	0.0894	9	15.00	5	38
Q50	IU	0.000306	16	1339.86	21	33
Kout _{TS}	day^{-1}	0.00228	8	535.09	5	29
Kin _{CA}	U.mL.day	5.32	9	0.31	4	16
K2	$mm^{-1}.day$	33.4	7	0.04	5	30
Kout _{CA}	day^{-1}	0.0307	4	23.19	5	36

Typical parameters and inter-individual variability estimated

				$\langle \rangle$		
Parameter	Unit	Estimate	RSE estimate		RSE IIV	Shrinkage
			(%)	(CV)	(%)	(%)
<i>K</i> 1	day^{-1}	0.054	4	0.63	5	26
Kin _{TS}	$mm.day^{-1}$	0.0894	9	15.00	5	38
Q50	IU	0.000306	16	1339.86	21	33
Kout _{TS}	day^{-1}	0.00228	8	535.09	5	29
Kin _{CA}	U.mL.day	5.32	9	0.31	4	16
K2	$mm^{-1}.day$	33.4	7	0.04	5	30
Kout _{CA}	day^{-1}	0.0307	4	23.19	5	36

-

Results

Typical parameters and inter-individual variability estimated

				\cap		\bigcap
Parameter	Unit	Estimate	RSE estimate	/ IIV \	RSE IIV	Shrinkage
			(%)	(CV)	(%)	(%)
<i>K</i> 1	day^{-1}	0.054	4	0.63	5	26
Kin _{TS}	$mm.day^{-1}$	0.0894	9	15.00	5	38
Q50	IU	0.000306	16	1339.86	21	33
Kout _{TS}	day^{-1}	0.00228	8	535.09	5	29
Kin _{CA}	U.mL.day	5.32	9	0.31	4	16
K2	$mm^{-1}.day$	33.4	7	0.04	5	30
Kout _{CA}	day^{-1}	0.0307	4	23.19	5	36

Typical parameters and inter-individual variability estimated

Parameter	Unit	Estimate	RSE estimate	IIV	RSE IIV	Shrinkage
			(%)	(CV)	(%)	(%)
<i>K</i> 1	day^{-1}	0.054	4	0.63	5	26
Kin _{TS}	$mm.day^{-1}$	0.0894	9	15.00	5	38
Q50	IU	0.000306	16	1339.86	21	33
Kout _{TS}	day^{-1}	0.00228	8	535.09	5	29
Kin _{CA}	U.mL.day	5.32	9	0.31	4	16
K2	$mm^{-1}.day$	33.4	7	0.04	5	30
Kout _{CA}	day^{-1}	0.0307	4	23.19	5	36

Covariates at baseline:

- Basal lesion size on Kin_{TS}: larger tumor growth for patients with a lesion size > 5cm
- Basal number of lesions on Q50: treatment more potent in patients with only 1 lesion site

Results

Model internal evaluation: NPDE distribution

Tumor size

10 / 20

Results

Model internal evaluation: Visual Predictive Check

11 / 20

K-PD combined model of drug kinetics, tumor dynamics and CA 125 kinetics:

- Data satisfactorily described (GOFs, not shown)
- Adequate predictive performance (NPDEs, VPCs)
- -> Model internal validation **achieved**

Results

Model "External" evaluation

• Method:

- Model structure
- Parameters distributions
- Validation dataset
- -> Tumor size and CA 125 predictions

Results

Model "External" evaluation

• Method:

- Model structure
- Parameters distributions
- Validation dataset
- -> Tumor size and CA 125 predictions

• NPDE:

-> Model "external" validation **achieved**

Mélanie Wilbaux

Tumor size and CA 125 kinetics modeling - PAGE 2012

13 / 20

Results Clinical applications: Treatment comparison

Carboplatin - Pegylated Liposomal Doxorubicin (CD) **VS** Carboplatin - Paclitaxel (CP):

EBEs not significantly different in both groups

Mélanie Wilbaux

Results Clinical applications: Treatment comparison

Carboplatin - Pegylated Liposomal Doxorubicin (CD) **VS** Carboplatin - Paclitaxel (CP):

EBEs not significantly different in both groups

-> In agreement with CALYPSO trial conclusions

Tumor size and CA 125 kinetics modeling - PAGE 2012

14 / 20

15 / 20

15 / 20

Tumor size Predictions versus Observations

Unbiased (MPE = 2 %)

Limited precision (MAE = 48 %)

Results

Clinical applications: Tumor size monitoring

Tumor size Predictions versus Observations

-> Tumor size **prediction** from CA 125 at the population level (high values)

Mélanie Wilbaux

16 / 20

16 / 20

Results Clinical applications: Tumor size forecast

Tumor size Predictions versus Observations

Unbiased (MPE = 0.5 %)

Limited precision (MAE = 48 %)

Results

Clinical applications: Tumor size forecast

Mélanie Wilbaux

Tumor size and CA 125 kinetics modeling - PAGE 2012

Cīo

First combined model, internally and externally validated, characterizing tumor size and CA 125 kinetics in ROC patients, after chemotherapy.

First combined model, internally and externally validated, characterizing tumor size and CA 125 kinetics in ROC patients, after chemotherapy.

- Treatment or dosing regimen comparison
- Tumor size monitoring using CA 125 at the population level
- CA 125 is not a surrogate marker of measured lesion size at the individual level

17 / 20

 Tumor size observations: sum of the longest dimension for all target lesions -> May not take into account complete tumor burden and metastases in ROC patients

- Tumor size observations: sum of the longest dimension for all target lesions -> May not take into account complete tumor burden and metastases in ROC patients
- CA 125 assumes to be produced by all tumor cells

- Tumor size observations: sum of the longest dimension for all target lesions -> May not take into account complete tumor burden and metastases in ROC patients
- CA 125 assumes to be produced by all tumor cells
- Predictive value of CA 125 kinetics on Progression Free Survival in a similar ROC patients population³:

[3]You et al. Mathematical modeling of CA125 kinetics in recurrent ovarian cancer (ROC) patients treated with chemotherapy and predictive value of early modeled kinetic parameters in CALYPSO trial: A GCIG study. *J Clin Oncol*. 2011(suppl: abstr 5065).

- Tumor size observations: sum of the longest dimension for all target lesions -> May not take into account complete tumor burden and metastases in ROC patients
- CA 125 assumes to be produced by all tumor cells
- Predictive value of CA 125 kinetics on Progression Free Survival in a similar ROC patients population ³:

-> Interest of CA 125 kinetics analysis to predict treatment success or failure Mélanie Wilbaux Tumor size and CA 125 kinetics modeling - PAGE 2012

To confirm our results on other data in ROC

Mélanie Wilbaux

Perspectives

- To confirm our results on other data in ROC
- O To apply population modeling approach on other biomarkers:
 - PSA in prostate cancer ⁴
 - hCG in gestational trophoblastic disease ⁵
 - ...

[4] You et al. Prognostic value of modeled PSA clearance on biochemical relapse free survival after radical prostatectomy. *Prostate*, 2009.

[5] You et al.Predictive values of hCG clearance for risk of methotrexate resistance in low-risk gestational

19 / 20

Mélanie Wilbaux

Thank you !

Mélanie Wilbaux

Backslide

CALYPSO patients exclusion

Data distribution of dependent variables tumor size and CA 125

Characteristics	Data							
	Min.	1 st Qu.	Median	Mean	3 rd Qu.	Max.		
CA 125 values number/patient	4.0	8.0	10.0	10.2	12.0	21.0		
CA 125 values (U/mL)	1.0	18.0	50.5	341.0	173.0	75410.0		
Tumor size values number/patient	2.0	3.0	4.0	3.9	5.0	9.0		
Tumor size values (mm)	0.0	11.0	33.0	49.1	68.0	400.0		
Dropout times (days)	59.0	357.5	485.0	512.8	658.0	1342.0		

Continuous and categorical covariates distributions

Continuous covariates	Data						
	Min.	1 st Qu.	Median	Mean	3 rd Qu.	Max.	
Age (years)	27.11	54.34	61.25	60.63	67.71	82.49	
Weight (kg)	41.00	60.00	69.00	70.08	78.00	150.00	
Height (cm)	139.0	158.0	162.0	162.3	167.0	183.0	
BSA (m2)	1.320	1.620	1.730	1.742	1.85	2.59	
Creatinine (umol/L)	6.20	61.90	70.70	72.07	82.00	154.00	
PFS 1 st chimio (months)	2.76	15.07	20.66	26.35	31.09	144.40	
Patient Therapy Free Interval (months)	6.0	6.0	12.0	9.757	12.0	12.0	

Categorical covariates	Data					
	(number of patients)					
Treatment	CP			CD		
	284		251			
Any surgery within 28 days	Yes			No		
	43			492		
FIGO stage	1	П	III	IV		
	24	38	395	66		
Primary tumor site	Fallopian	Ov	ary Peritoneal			
	19 47		75 41			
Elevated weight blood cells	Yes		No			
	341		192			
Ascite involvement	Yes			No		
	531		4			
Measurable lesion	Yes		No			
	494		41			
Lesion sites number	1		> 1			
	163		372			
Target lesion size	< 5		> 5			
	390		145			
Number of cycles	1-3	4 - 6	7 – 9	10-14		
	33	376	107	19		

$$CA \ 125'_{\lambda} = \frac{CA \ 125^{\lambda} - 1}{\lambda}$$

 $\lambda = -0.16$

$$\begin{cases} \frac{dQ1}{dt} = -K1 \times Q1 \\ \frac{dQ2}{dt} = K1 \times Q1 - K1 \times Q2 \\ \frac{dTS}{dt} = Kin_{TS} \times \left(1 - \frac{Q2}{Q50 + Q2}\right) - Kout_{TS} \times TS \\ \frac{dCA}{dt} = Kin_{CA} \times \exp(K2 \times VARTS) - Kout_{CA} \times CA \end{cases}$$

Results

Model internal evaluation: Predictions versus Observations

27 / 20

Mélanie Wilbaux

• Example of tumor size individual fits for 3 ROC patients

• Example of CA 125 individual fits for 3 ROC patients

• Bias measure -> Mean Prediction Error (MPE):

$$MPE = \frac{\sum_{i=1}^{N} (Predicted - Observed)}{N}$$

• Precision measure -> Mean Absolute prediction Error (MAE):

$$MAE = \frac{\sum_{i=1}^{N} |Predicted - Observed|}{N}$$

29 / 20