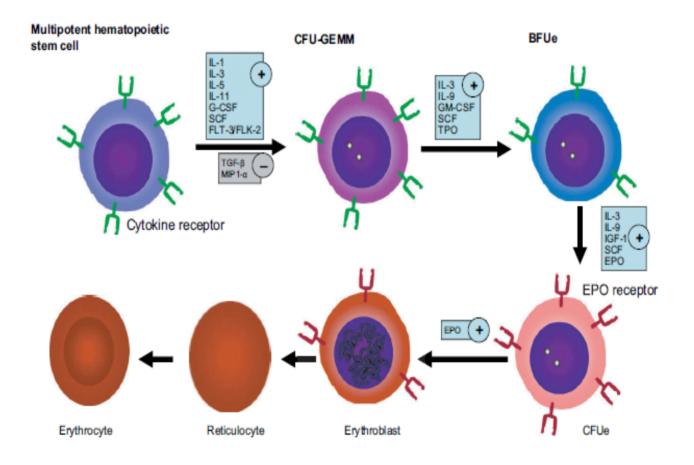
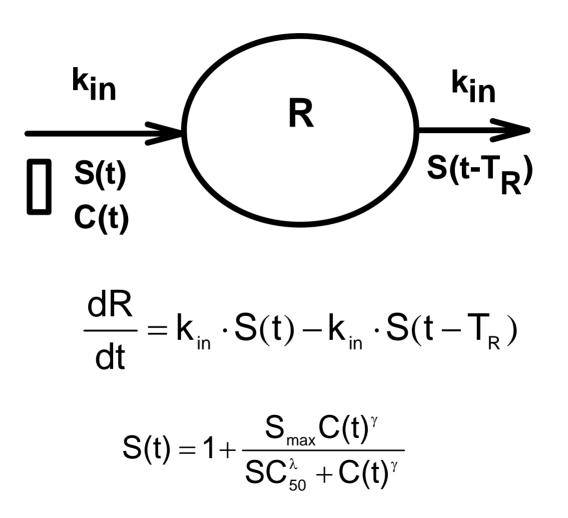

Solving Delay Differential Equations in S-ADAPT by Method of Steps

Wojciech Krzyzanski¹ Robert J. Bauer²

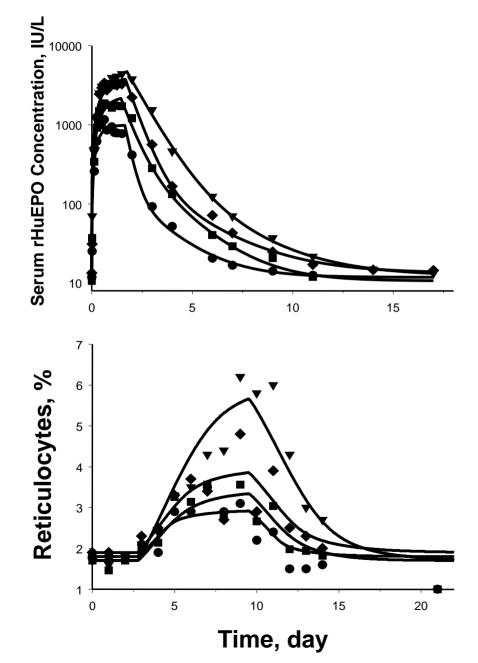

¹Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA ²ICON Development Solutions, Ellicott City, USA

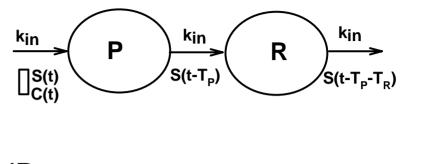
Cell Populations of Pharmacodynamic Interest

- hematopoietic cells (RBC, WBC, PLT)
- bacteria and viruses
- neoplastic cells
- parasites



Erythropoiesis


Eliott et al., Exp. Hematol. 36:1573 (2008)


Basic Lifespan-based Indirect Response

Krzyzanski and Jusko, JPB 27: 467 (1999).

Stimulation of Reticulocyte Production by Epoetin Alfa

$$\frac{dR}{dt} = k_{in} \cdot S(t - T_{P}) - k_{in} \cdot S(t - T_{P} - T_{R})$$

EPO serum concentrations (upper panel) and reticulocyte counts (lower panel) after subcutaneous administration of EPO doses of 450, 900, 1350, and 1800 IU/kg.

Data from K Cheung et al. Clin. Pharmacol. Ther. 64: 412 (1998)

General Form of DDE System

$$\frac{dx}{dt} = f(t, x(t), x(t - T_1), x(t - T_2), ..., x(t - T_p)) \text{ for } t > 0$$

$$\mathbf{x}(t) = \mathbf{x}_0, \quad \text{ for } t \leq 0$$

x(t) = vector of states at time t. $T_1, ..., T_p =$ delay times. $x_0 =$ state vector in the past.

The rate of change of x depends not only on the current value x(t), but also on the system states before times T_1 , ..., T_p : $x(t-T_1)$,..., $x(t-T_p)$.

DDE Solvers

Algorithms based on the Runge-Kutta Method:

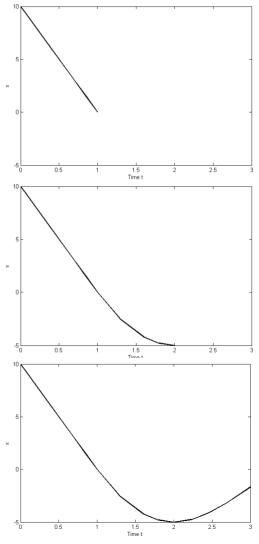
•DELSOL (Fortran)

Willie DR and Baker CTH. DELSOL – a numerical code for the solutions of systems of delaydifferential equations. Appl. Numer. Math. 9:223-234 (1992).

•RETARD, RADAR5 (Fortran)

Hairer E, Norsett SP, and Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems. . Berlin, Springer, 1993.

http://univaq.it/~guglielm/guglielmi_eng.html#SO


•dde23 (MATLAB)

Shampine LF and Thompson S. Solving DDEs in MATLAB. Appl. Num. Math. 37:441-458 (2001). http://www.radford.edu/~thompson/webddes/index.html

Methods of Steps: Example

0

$$\begin{split} \frac{dx}{dt} &= -x(t-1) \ \text{ for } 0 < t \qquad x(t) = 10 \ \text{ for } t \leq \\ 1^{st} \ \text{step: Find solution for } 0 < t < 1: \\ 0 < t < 1 \Rightarrow -1 < t-1 < 0 \Rightarrow x(t-1) = 10 \\ &\qquad \frac{dx}{dt} = -10 \\ x(t) = 10 - 10t \\ 2^{nd} \ \text{step: Find solution for } 1 < t < 2: \\ 1 < t < 2 \Rightarrow 0 < t-1 < 1 \Rightarrow x(t-1) = 10 - 10(t-1) \\ &\qquad \frac{dx}{dt} = -(10 - 10(t-1)) \\ x(t) = -10(t-1) + 5(t-1)^2 \\ 3^{rd} \ \text{step: Find solution for } 2 < t < 3: \\ 1 < t < 2 \Rightarrow 1 < t-1 < 2 \Rightarrow x(t-1) = -10(t-2) + 5(t-2)^2 \\ &\qquad \frac{dx}{dt} = -(-10(t-2) + 5(t-2)^2) \\ x(t) = -5 + 5(t-2)^2 - \frac{5}{3}(t-1)^3 \end{split}$$

Methods of Steps: Numerical

 $\frac{dx}{dt} = -x(t-1) \quad \text{ for } 0 < t \quad x(t) = 10 \quad \text{for } t \le 0$

To find a solution for **0< t <3**: $y_1(t)=x(t), y_2(t)=x(t-1)$

$$\frac{\mathrm{d} \mathbf{y}_1}{\mathrm{d} \mathbf{t}} = -\mathbf{y}_2(\mathbf{t})$$

$$\frac{\mathrm{dy}_2}{\mathrm{dt}} = -\mathbf{x}(t-2)$$

Since t-2 > 0 for some t, we need to calculate x(t-2): $y_3(t)=x(t-2)$ $\frac{\frac{dy_2}{dt}=-y_3(t)}{\frac{dy_3}{dt}=-x(t-3)}$ Since t-3 < 0 for all 0 < t <3 : x(t-3) = 10 and $\frac{\frac{dy_3}{dt}=-10}{\frac{dt}{dt}=-10}$

Initial conditions: $y_1(0)=10$, $y_2(0)=10$, $y_3(0)=10$

Method of Steps

•If for a time interval $t_i < t < t_{i+1}$ ("a step") the delay t_{i+1} - T is less than t_i , then delayed state y(t-T) defined by its values for times less than t_i , which makes y(t-T) a "known" variable.

•If all delayed variables become "known" over the time interval $t_i < t < t_{i+1}$, then for this time interval the system does not have unknown delay variables and becomes an ODE system.

Methods of steps transforms a system of DDEs into a system of ODEs.

Driver RD. Ordinary and Delay Differential Equations. New York, Springer-Verlag, 1977. http://www.radford.edu/~thompson/webddes/tutorial.html

Methods of Steps: NONMEM

Journal of Pharmacokinetics and Pharmacodynamics, Vol. 32, Nos. 5–6, December 2005 (© 2005) DOI: 10.1007/s10928-005-0019-1

Population Cell Life Span Models for Effects of Drugs Following Indirect Mechanisms of Action¹

Juan J. Perez-Ruixo,^{2,*} Hui C. Kimko,³ Andrew T. Chow,³ Vladimir Piotrovsky,² Wojciech Krzyzanski,⁴ and William J. Jusko⁴

- Delay is introduced to the state variables using ALAG.
- Limited number of ODEs (99).
- Limited number of ALAGs (20).

S-ADAPT

Pharmacokinetic/Pharmacodynamic Systems Analysis

BMSR	ADAPT	DOWNLOAD	INSTALLATION	USER'S GUIDE	CITATIONS	MODEL LIBRAR
------	-------	----------	--------------	--------------	-----------	--------------

S-ADAPT

S-ADAPT is a version of ADAPT II Release 3 that contains an augmented interface as well as additional simulation and optimization abilities. Some features include: commandline interface for entering parameters and executing commands, screen forms and editors for entering data and parameters, evaluation of algebraic expressions at the command line. It also performs parametric population analysis, including maximum likelihood estimation (via the EM algorithm with sampling as implemented in the Monte Carlo Expectation Maximization (MCPEM) algorithm), as well as Bayesian estimation. The program runs on Windows NT through XP and Linux., with various Fortran compilers including Compaq Visual Fortran 6.x, Intel 9.x-11.x and g77.

University of Southern California Biomedical Simulations Resource Biomedical Engineering

http://bmsr.usc.edu/Software/BMSRsoftware.html

Implementation of Methods of Steps in S-ADAPT

$$\frac{dx}{dt} = \sum_{j=1}^{m_{b}} b_{j}(t) + \sum_{k=1}^{n_{r}} r_{k}(t) + h(t, x(t), x(t - T_{1}), ..., x(t - T_{p}))$$

Vector of all possible delay times:

 $\tau_i = i_1 T_1 + i_2 T_2 + \ldots + i_p T_p$

Vector of all possible delay states:

$$y_{i_{1}i_{2}...i_{p}}(t) = \begin{cases} x(t - i_{1}T_{1}... - i_{p}T_{p}), & \text{ if } i_{1}T_{1} + ... + i_{p}T_{p} < t \leq t_{\text{last}} \\ x_{0}, & \text{ if } t \leq i_{1}T_{1} + ... + i_{p}T_{p} \end{cases}$$

S-ADAPT:

•Determines the derivatives of $y_{i1...ip}$ from the original DDE systems.

- •Creates a new ODE systems for y_{i1...ip}.
- •Uses LSODA to calculate the solution.
- •Reports $y_{0...0}$ as the solution to the DDE system.

Implementation of Methods of Steps in S-ADAPT

- Mapping integer combinations of the delay times.
- Filtering and sorting delay times.
- Creating the ODE system.
- Bolus and zero-order infusion input.
- Handling the time dependent DDE systems.

S-ADAPT Library DDE Routines

Tdroutines.for

```
subroutine tdmapping1(td,nn,tstop,tdc,xvalmax)
```

```
subroutine tetd_process(gg)
```

```
subroutine xdtd(i,x)
```

```
Subroutine DOSE_TIME_DELAY(td,nntd,nbb,nrr)
```

Tdelay.inc

This files contains global variables specific to DDE routines that are not in globals.inc

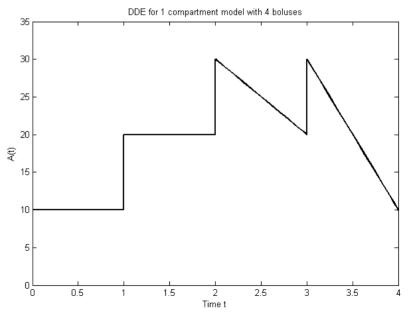
S-ADAPT User Defined DDE Routines

Model_Del.for

Subroutine DEL_DIFFEQ(T,X,XP,RD)

Subroutine DEL_OUTPUT(Y,T,X)

Subroutine SYMBOL


Subroutine DEL_VARMOD(V,T,X,Y,J)

Multiple IV Boluses to One Compartment with Delayed Elimination

$$\frac{dA}{dt} = \sum_{i=1}^{m} \text{Dose} \cdot \delta(t - t_i) - k \cdot A(t - T) \quad \text{for } t > 0$$

 $A(t) = A_0, \text{ for } t \le 0$

D = 10 dose Bolus times $t_1 = 0,$ $t_2 = 1,$ $t_3 = 2,$ $t_4 = 3$ k = 1 elimination rate constant. T = 2 delay $A_0 = 0$ past

MATLAB dde23 generated solution

User Defined Model

```
Subroutine DEL_DIFFEQ(T,X,XP,RD)
Implicit None
```

```
Include 'globals.inc'
Include 'model.inc'
include 'tdelay.inc'
```

```
Real*8 T,X(*),XP(*),RD(*)
real*8 k
```

```
TD(1) = P(1)
k = P(2)
```

XP(1) = -k * XD(1,1)

Return End

Output Subroutine

```
Subroutine DEL_OUTPUT(Y,T,X)
Implicit None
```

```
Include 'globals.inc'
Include 'model.inc'
include 'tdelay.inc'
```

```
Real*8 Y(*),T,X(*)
integer k
```

```
\mathrm{TD}\left(\,1\,\right)=\mathrm{P}\left(\,1\,\right)
```

```
XO(1) = P(3)
```

```
noeqs=1
```

```
Y(1) = X(1)
```

Return End

Symbol Subroutine

```
Subroutine SYMBOL
Implicit None
Include 'globals.inc'
Include 'model.inc'
include 'tdelay.inc'
character*60 descr
common /descr/ Descr
NDE=1 ! Enter # of Diff. Eqs.
NDEL=1 !Enter # of time delays
NDEqs = NDE*(NTD+1)
NSParam = 3 ! Enter # of Sys. Param.
NVparam = 0 ! Enter # of Var. Param.
Ieqsol = 1 ! Model type.
NTPARAM = 0 ! Enter # of Tran.Param.
Descr = ' Multi-Bolus'
Psym(1) = 'T1'
psym(2)='k'
Psvm(3) = 'X0'
Return
End
```

Model Compilation in S-ADAPT

_ 8 ×

S S-ADAPT

Setting environment for using Visual Fortran tools

c:\SADAPT>sadapt multiple_bolus

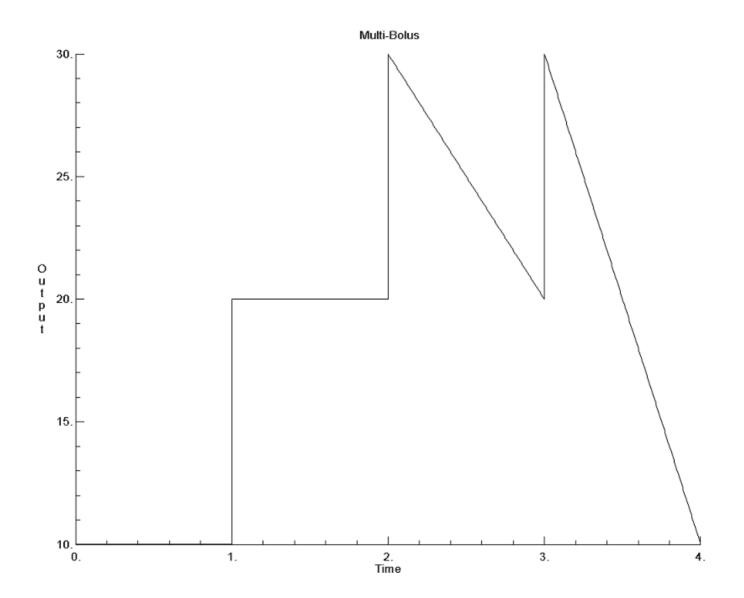
Microsoft (R) Program Maintenance Utility Version 6.00.8168.0 Copyright (C) Microsoft Corp 1988-1998. All rights reserved.

The contents of these build results are also located in multiple_bolus.bld The executable file is called multiple_bolus.exe

c:\SADAPT>multiple_bolus

S-ADAPT Table for Simulations

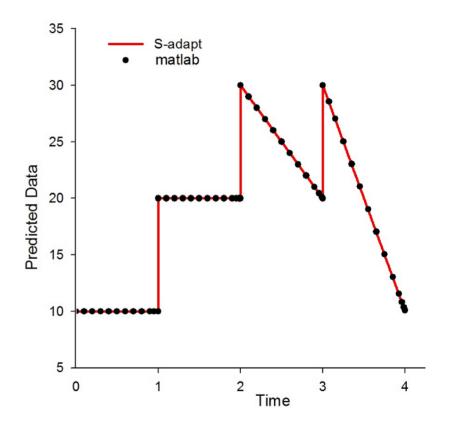
Page 1 0	SESS CALC
0: PROCESS	1: INFORMATION
1:DEFINE ROOT NAME	
2:EDIT DOSE	Edit Dose information
3:MODEL PARAMETERS	Modify model parameters
4:PLOT PARAMETERS	Set up plot parameters
5:PLOT	plot the curve
6:PRINT PLOT	Print the plot
7:SAVE CONFIG	store configuration information in .s00
8: PRINT CONFIG	Print configuration file .s00
9:WRITE SIMULATION	Write simulation values to .wrt
10:RESTORE CONFIG	obtain configuration info from .s00
11:BROWSE	Browse directory for *.dat files
12:STOP	Exit Adapt program
13:COMMAND	Enter any other command
14:	
15:	
16:	
/EX=exit /RED to red	lisplay /HELP for more commands
14:0:	

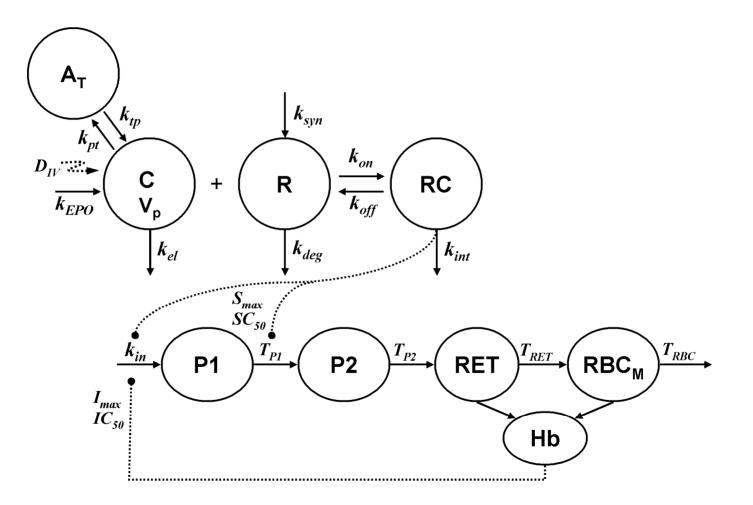

Model Input

Page	1	Dosing Da	ta				
Time	Period	Dose	Repeat	Coun	ts N	S	E
0.000000	0.000000	10.00000	1.000000	4	0	1	1

Page	1	Model Par	ameters	
	Parameter	R Lower	Upper	
Т1	2.0000000	Y		
k	1.0000000	Y		
XO	0.000000	Y		

Page	1 Plot Para	meters
Tstart	0.000 Tstop	4.000


Model Output


S-ADAPT vs. MATLAB

Time	S-ADAPT	MATLAB
0	10.0000	10.0000
0.5	10.0000	10.0000
1.0	10.0000	10.0000
1.0	20.0000	20.0000
1.5	20.0000	20.0000
2.0	20.0000	20.0000
2.0	30.0000	25.0000
2.5	25.0000	25.0000
3.0	20.0000	20.0000
3.0	30.0000	25.0000
3.5	20.0000	20.0052
4.0	10.0000	10.0052

MATLAB: RelTol=10⁻⁴ AbsTol=10⁻⁶ S-ADAPT: RelTol=10⁻⁸ AbsTol=10⁻⁸

PK/PD Model of rHuEPO Stimulatory Effect on RBC Production

S. Woo et al., J. Pharmacokinet. Pharmacodyn. 34:849-868 (2007).

Model Equations

$$\frac{dC}{dt} = k_{EPO} - k_{on} \cdot R \cdot C + k_{off} \cdot RC - (k_{el} + k_{pt}) \cdot C + k_{tp} \cdot A_T / V_p$$
$$\frac{dA_T}{dt} = k_{pt} \cdot C \cdot V_p - k_{tp} \cdot A_T$$
$$\frac{dR}{dt} = k_{syn} - k_{on} \cdot R \cdot C + k_{off} \cdot RC - k_{deg} \cdot R$$
$$\frac{dRC}{dt} = k_{on} \cdot R \cdot C - (k_{off} + k_{int}) \cdot RC$$

$$\frac{dRET}{dt} = k_{in} \cdot S(t - T_{P1} - T_{P2}) \cdot S(t - T_{P2}) \cdot I(t - T_{P1} - T_{P2}) - k_{in} \cdot S(t - T_{P1} - T_{P2} - T_{RET}) \cdot S(t - T_{P2} - T_{RET}) \cdot I(t - T_{P1} - T_{P2} - T_{RET})$$

$$\frac{dRBC_{M}}{dt} = k_{in} \cdot S(t - T_{P1} - T_{P2} - T_{RET}) \cdot S(t - T_{P2} - T_{RET}) \cdot I(t - T_{P1} - T_{P2} - T_{RET}) - k_{in} \cdot S(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot S(t - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot S(t - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P2} - T_{RET} - T_{RBC}) \cdot I(t - T_{P1} - T_{P1} - T_{P1} - T_{P2} - T_{P1} - T_{P1}$$

$$S(t) = 1 + \frac{S_{max} \cdot RC(t)}{SC_{50} + RC(t)} \qquad I(t) = 1 - \frac{I_{max} \cdot \Delta Hb(t)}{IC_{50} + \Delta Hb(t)} \qquad Hb(t) = MCH \cdot RBC(t)$$

S-ADAPT Del_Diffeq and Del_Otput

TD(1)=P(1) TD(2)=P(2) TD(3)=P(3) TD(4)=P(4) TRBC =P(5) kon=P(7) koff=P(8) kel=P(9) kpt=P(10) ktp=P(11)	Vp=P(12) kint=P(13) Smax=P(14) SC50=P(15) Imax=P(16) IC50=P(17) MCH=P(18) C0=P(19) R0=P(20) kdeg=P(21) RBC0=P(22)	<pre>TRET=TD(4)-TD(2) RET0=TRET*RBCO/(TRET+TRBC) RBCM0=RBC0-RET0 Hb0=MCH*RBC0 AT0=kpt*C0*Vp/ktp RC0=kon*R0*C0/(koff+kint) kEP0=kel*C0*Vp+kint*RC0*Vp ksyn=kdeg*R0+kint*RC0 kin=RET0/(TRET*(1+Smax*RC0/(SC50+RC0))**2)</pre>
---	---	---

C =X(1 AT =X(2 RR =X(2 RC =X(4 RET =X(5 RBCM=X(6	2) S1 = (3) S2 = (4) S3 = (5) S4 =	1+Smax*XD(4,1)/(SC50+XD(4,1)) 1+Smax*XD(4,2)/(SC50+XD(4,2)) 1+Smax*XD(4,3)/(SC50+XD(4,3)) 1+Smax*XD(4,4)/(SC50+XD(4,4)) 1+Smax*RC0/(SC50+RC0)	X0(1)=CO*Vp X0(2)=ATO X0(3)=RO X0(4)=RCO X0(5)=RETO X0(6)=RBCMO
---	---	---	--

```
I1 = 1-Imax*(MCH*(XD(5,1)+XD(6,1))-HB0)/(IC50+(MCH*(XD(5,1)+XD(6,1))-HB0))
I3 = 1-Imax*(MCH*(XD(5,3)+XD(6,3))-HB0)/(IC50+(MCH*(XD(5,3)+XD(6,3))-HB0))
```

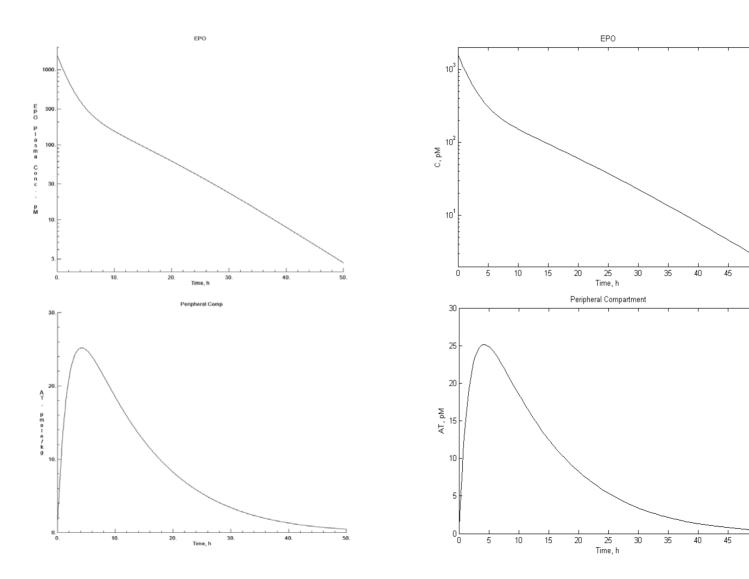
```
XP(1)=kEPO-kon*C*RR*Vp+koff*RC*Vp-(kel+kpt)*C*Vp+ktp*AT
```

```
XP(2)=kpt*C*Vp-ktp*AT
```

- XP(3)=ksyn-kon*C*RR+koff*RC-kdeg*RR
- XP(4)=kon*C*RR-(koff+kint)*RC
- XP(5)=kin*S1*S2*I1-kin*S3*S4*I3
- XP(6)=kin*S3*S4*I3-kin*S0*S0

S-DAPT Dosing and Parameters

D	-1	D ' T	N -					
Page Time 0.000000	Period 0.000000	Dosing I Dose 92.51000	Repe	eat 00000	Counts 1	N O	S 1	E 1
PageT1T2T3T4TRBCkonkoffkelkptktpVpkintSmaxSC50ImaxIC50	1 Parameter 76.570000 33.600000 148.90000 105.93000 1440.0000 1.13200000E-0 1.2970000 0.22560000 0.20920000 0.20920000 0.17210000 0.17210000 5.69400000E-0 0.82280000 3.4800000 1.7000000 1.7000000		Page MCH CO RO kdeg RBCO	20.0 0.00 63.2 0.11	ameter 000000 200000 330000 80000			


C and A_{T}

S-ADAPT

MATLAB

50

50

R and **RC**

S-ADAPT

60.

R 40.1

20.

0

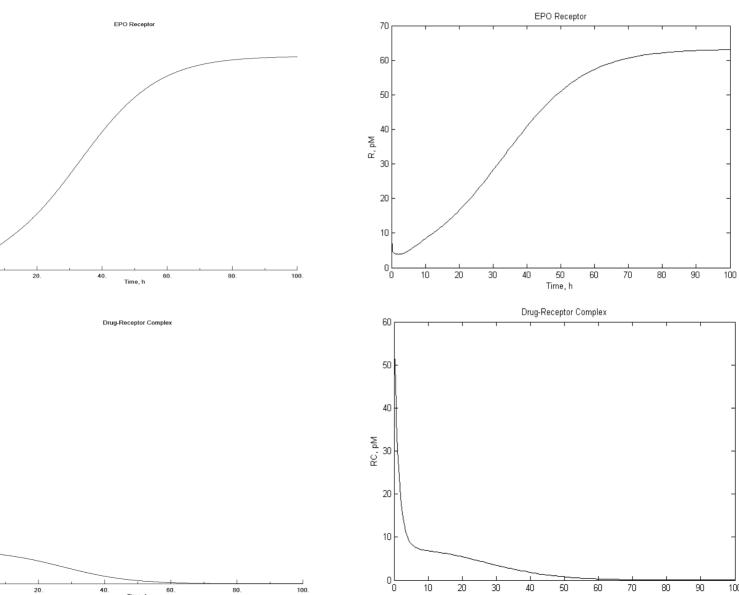
60.

40.

20.

0.L 0.

20.


40.

60.

Time, h

R C р М 0.

р М

100.

80.

10

20

30

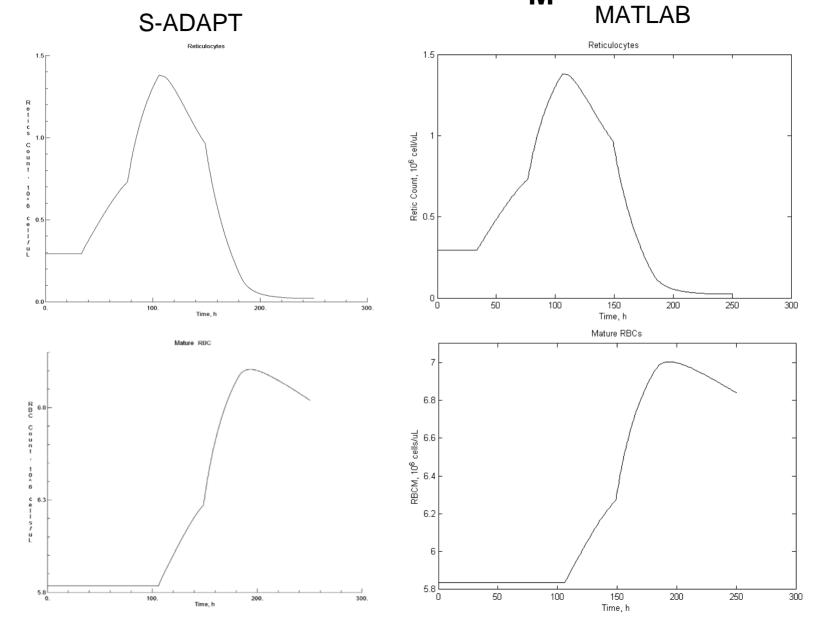
40

50

Time, h

60

70


80

90

100

MATLAB

RET and RBC_M

Conclusions

- The methods of steps transforms a system of DDEs into a systems of ODEs.
- S-ADAPT implementation of the methods of steps allows solving DDEs with a constant past and bolus inputs.
- S-ADAPT solutions are identical with MATLAB dde23 generated solutions given the same tolerance levels for numerical error.
- S-ADAPT is the first program designed for population PK/PD analysis that is capable of solving arbitrary DDE models

Acknowledgments

- Aman Singh, Department of Pharmaceutical Sciences, University at Buffalo.
- NIH Grant GM57980 from the National Institutes of General Medical Sciences.

Please e-mail <u>wk@buffalo.edu</u> for

- S-ADAPT DDE solver routines.
- S-ADAPT codes for presented examples.