

Using Hamiltonian Monte-Carlo to design longitudinal count studies accounting for parameter and model uncertainties

Florence Loingeville¹, Thu Thuy Nguyen¹, Marie-Karelle Riviere^{1,2}, France Mentré¹

¹IAME-UMR 1137, INSERM and University Paris Diderot, Paris, France ²Biostatistics & Programming Department, Sanofi, Paris, France

CONTEXT		OBJECTIVES					
The Fisher Information Matrix (FIM) can be used to design longit mixed effect models (NLMEM) [1]. A Monte-Carlo Hamiltonian M has been developed to evaluate the FIM [2], then the D-optimali designs. This approach however requires a priori knowledge on r to design that are only locally optimal.	onte-Carlo (MC/HMC) method cy can be used to optimize	 To illustrate this approach in robust design optimization for repeated count data 					
METHODS							
Notations		r given parameter values ψ_m^*	2) Robust design accounting for parameter				
M = population Fisher information matrix	of a g	given model <i>m</i>	uncertainty for a given model m				
M_R = robust population Fisher information matrix	Evaluation of FIM by M	C/HMC ^[2]	Evaluation of robust FIM by MC/HMC				
$\Xi = \{N, \xi\}$ = population design , N = number of individuals	$M(\psi_m, Z)$	$\Xi) = N x M(\psi_m, \xi)$	$M_R(\Xi) = E_{\psi_m}(M(\psi_m, \Xi))$				
ξ = elementary design (identical in all individuals) => To be optimized	$M(\psi_m,\xi) = E_y \left(\frac{\partial \log \theta}{\partial \theta}\right)$	$\frac{g(L(y,\psi_m))}{\partial\psi_m} \frac{\partial \log(L(y,\psi_m))}{\partial\psi_m}^T$	- two integrals w.r.t. y and w.r.t. b for evaluation of $M(\psi_m, \Xi)$				
$1 \eta = nonulation narameter values for model m$		·	1 - one supplementary integral w.r.t. ψ for evaluation 1				

ψ_m = population parameter values for model <i>m</i> P_m = number of population parameters of model <i>m</i> $p_m(\psi_m)$ = <i>a priori</i> population parameter distribution for model <i>m</i> <i>b</i> = vector of random effects <i>y</i> = vector of observations for one individual α_m = weight quantifying balance between <i>M</i> models ($\sum \alpha_m = 1$)	with the likelihood $L(y, \psi_m) = \int p(y b, \psi_m) \frac{p(b \psi_m)}{pdf} db$ pdf of observations y given random effects b =>2 integrals to compute: w.r.t y (MC) and w.r.t b (HMC) • Use of D-optimality criterion $\Phi_{D,m}(\Xi) = det(M(\psi_m^*, \Xi))^{1/P_m}$ 4) Robust design accounting for parameter and	 one supplementary integral w.r.t. ψ_m for evaluation M_R(Ξ) ⇒ Evaluation by MC-HMC using Stan (drawing jointly ψ_m and y by MC) Use of DE-optimality criterion Φ_{DE,m}(Ξ) = det(M_R(Ξ))^{1/Pm}
 3) Robust design accounting for model uncertainty for given parameter values Proposition of a set of M candidate models Evaluation of FIM by MC/HMC for each model m Evaluation of D-optimality criterion on each model m Use of the Compound D-optimality criterion [3,4] \$\Phi_{CD}(\vec{E}) = \prod_{m=1}^{M} \Phi_{D,m}(\vec{E})^{\alpha_m} = \prod_{m=1}^{M} (det(M(\psi_m, \vec{E})))^{\alpha_m/P_m})^{\alpha_m/P_m}\$	4) Robust design accounting for parameter and model uncertainties • Proposition of a set of M candidate models $(m=1,,M)$ • Evaluation of robust FIM by MC/HMC for each model m • Evaluation of DE-optimality criterion on each model m • Use of the Compound DE-optimality criterion: $\Phi_{CDE}(\Xi) = \prod_{m=1}^{M} \Phi_{DE,m}(\Xi)^{\alpha_m} = \prod_{m=1}^{M} (\det(M_R(\Xi)))^{\alpha_m/P_m}$	 Extension of R package MIXFIM [5] using Stan to draw HMC samples and to calculate partial derivatives of the log-likelihood [6] <i>Robust_fisher_evaluation()</i> function to evaluate M_R(Ξ) <i>Combin_optimization()</i> function to perform combinatorial optimization of design elements in ξ <i>Compound_optimality()</i> function to evaluate the CD and CDE-optimality criteria
APPLICATION	TO DESIGN OPTIMIZATION FOR CO	DUNT DATA

Count data example

- Daily count of events that we want to prevent
- Poisson model for repeated count

Candidate models

- $M_1: \log(\lambda) = \beta_1(1 \frac{d}{d + \beta_2}),$
- $M_2: \log(\lambda) = \beta_1(1 \beta_2 d),$

	ψ_m^*					$p_m(\psi_m)$				
	μ_1^*	μ_2^*	μ ₃ *	ω ₁ *	ω ₂ *	μ_1	μ ₂ (CV(μ ₂)=70%)	μ ₃	ω ₁	$ω_2$ (CV($ω_2$)=90%)
M ₁	1	0.5		0.3	0.3	1	<i>LN</i> (-0.89,0.63)		0.3	<i>LN</i> (-1.50,0.77)
M ₂	1	0.67		0.3	0.3	1	<i>LN</i> (-0.60,0.63)		0.3	<i>LN</i> (-1.50,0.77)
M_3	1	0.96		0.3	0.3	1	<i>LN</i> (-0.24,0.63)		0.3	<i>LN</i> (-1.50,0.77)
M_4	1	0.2	0.8	0.3	0.3	1	<i>LN</i> (-1.81,0.63)	0.8	0.3	<i>LN</i> (-1.50,0.77)
M_5	1	0.8	0.13	0.3	0.3	1	<i>LN</i> (-0.60,0.63)	0.13	0.3	<i>LN</i> (-1.50,0.77)

•
$$M_3 : \log(\lambda) = \beta_1 (1 - \beta_2 \log(d + 1)),$$

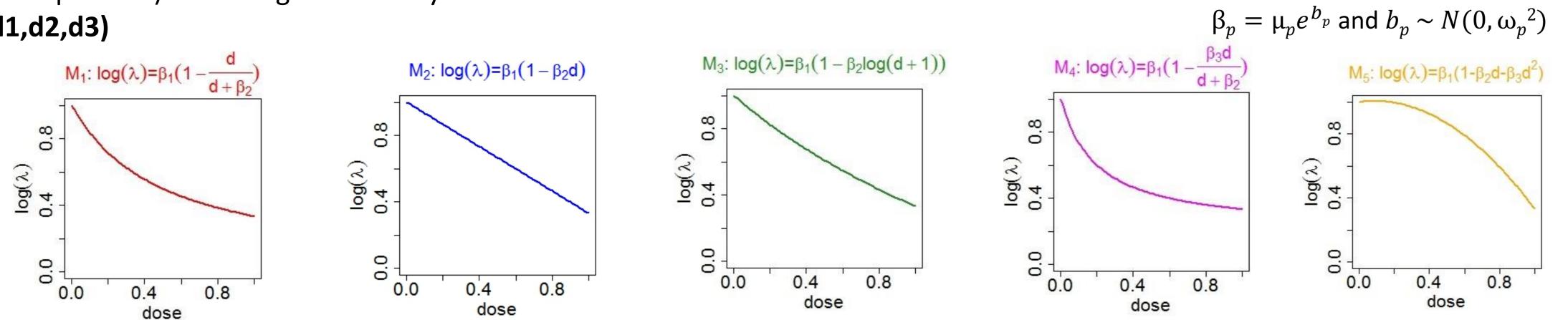
• $M_4 : \log(\lambda) = \beta_1 \left(1 - \frac{\beta_3 d}{d + \beta_2} \right),$

 $M_{5}: \log(\lambda) = \beta_{1}(-\beta_{2}d^{2} + \beta_{3}d + 1).$

esponse [2]:
$$P(y = k|b) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 λ : mean number of events / day

Each patient observed at 3 dose levels during placebo) days: (one Χ ξ=(d1,d2,d3)

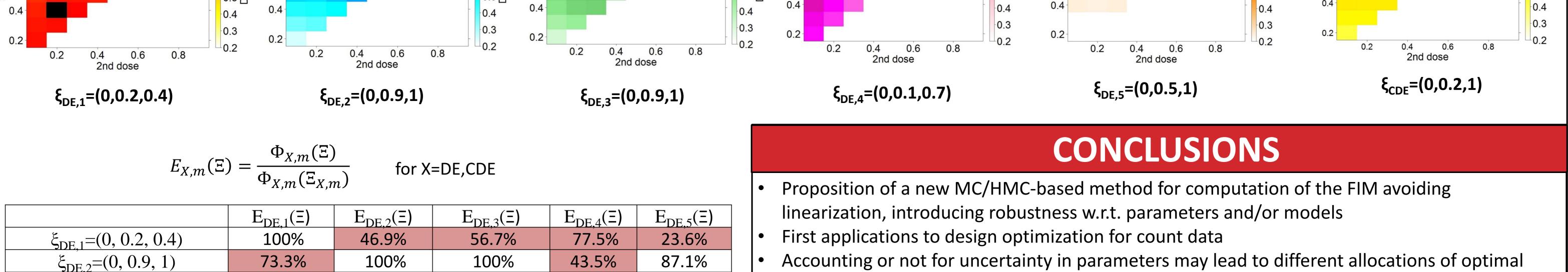


N=60 subjects, nrep=10 rep/subject/dose Combinatorial optimization of 2 dose levels between 0 and 1 with step=0.1, without repetition, with d₁=0 (placebo) \succ For computation of M_R : 5000 MC, 200 HMC

Robust design optimization w.r.t. parameters and model

RESULTS

Robust design with respect to Robust design with respect to parameters for each model parameters and model M_3 M₄ M_5 M_1 M_2 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.8 <u>ි</u> 0.8 <u>ح 0.8</u> <u>ර</u> 8.0 0.8 0.8 0.8 0.8 0.8 0.7 .e 0.7 0.7 0.6 0.0 DE-efficien dose 0.0 0.7 0.7 - 0.7 0.6 - 0.0 0.5 - 0.0 0.5 - 0.0 3rd dose 9.0 esop 0.6 3rd dose 0.7.0 0.6 0.5 0.5 0.5 0.6^{He}-HO 9.0 do 0.6 ^{ij} 0.6 J 3rd 0.5 💾 0.5님 0.4



Accounting or not for uncertainty in parameters may lead to different allocations of optimal 87.1% 43.5% 87.1% doses but has little impact on efficiencies 43.5% 100% 51.4% Misspecification of models can lead to low efficiencies

The CD/CDE-optimal designs provided a good compromise for different candidate models

PERSPECTIVES

- Replacement of MC in MC/HMC by more efficient approach: quasi-random sampling [7]
- Implementation of a more efficient optimization algorithm
- Combination of these methods with adaptive designs [8]

Acknowledgments This work was supported by the European Union 7th Framework Programme under Grant Agreement n602552. The authors thank Francois Cohen as well as Hervé Le Nagard for

the use of the "Centre de Biomodélisation".

Integrated DEsign and AnaLysis

of small population group trials

References

[1] Fedorov and Leonov, CRC Press, 2013 [2] Riviere, Ueckert and Mentré, Biostatistics, 2017 [3] Atkinson, Donev and Tobias, Oxford University press, 2009 [4] Nguyen, Benech, Delaforge and Lenuzza, Pharm Stat, 2016

 $\xi_{\text{DE.3}} = (0, 0.9, 1)$

 $\xi_{\text{DE},4} = (0, 0.1, 0.7)$

 $\xi_{\text{DE.5}} = (0, 0.5, 1)$

 $\xi_{\text{CDE}} = (0, 0.2, 1)$

[5] Riviere and Mentré, R package MIXFIM, 2015 [6] Stan developement team, RStan, 2012 [7] Pan and Thompson, Comput Stat Data Anal, 2007 [8] Lestini, Dumont and Mentré, Pharm Res, 2015

58.5%

84.6%

100%

82.8%

100%

100%

73.9%

89.6%

83.9%

100%

68.1%

87.8%

83.8%

73.3%

89.1%

83.1%

90.9%