
2) Robust design accounting for parameter
uncertainty for a given model m

• Evaluation of robust FIM by MC/HMC

𝑀𝑅 𝛯 = 𝐸ψ𝑚
𝑀 𝜓𝑚, 𝛯

- two integrals w.r.t. y and w.r.t. b for evaluation of 
𝑀 ψ𝑚, 𝛯

- one supplementary integral w.r.t. ψm for evaluation 
𝑀𝑅 𝛯

 Evaluation by MC-HMC using Stan (drawing jointly ψm

and y by MC)

• Use of DE-optimality criterion

𝛷𝐷𝐸,𝑚 𝛯 = 𝑑𝑒𝑡(𝑀𝑅 𝛯 ) Τ1 𝑃𝑚

• To extend the MC/HMC-based method to evaluate the FIM in NLMEM accounting for 
uncertainty in parameters and/or in models

• To illustrate this approach in robust design optimization for repeated count data

The Fisher Information Matrix (FIM) can be used to design longitudinal studies for nonlinear 

mixed effect models (NLMEM) [1]. A Monte-Carlo Hamiltonian Monte-Carlo (MC/HMC) method 

has been developed to evaluate the FIM [2], then the D-optimality can be used to optimize 

designs. This approach however requires a priori knowledge on models and parameters, leading 

to design that are only locally optimal.
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CONTEXT OBJECTIVES

METHODS
1) Optimal design for given parameter values ψm*

of a given model m
• Evaluation of FIM by MC/HMC [2]

𝑀 𝜓𝑚, 𝛯 = 𝑁 𝑥𝑀 𝜓𝑚, ξ

𝑀 𝜓𝑚, ξ = 𝐸𝑦
𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝑇

with the likelihood 𝐿 𝑦, ψ𝑚 = 𝑝׬ 𝑦 𝑏,ψ𝑚 𝑝(𝑏|ψ𝑚) 𝑑𝑏

pdf of b

pdf of observations y given random effects b   

=>2 integrals to compute: w.r.t y (MC) and w.r.t b (HMC)

• Use of D-optimality criterion

𝛷𝐷,𝑚 𝛯 = 𝑑𝑒𝑡(𝑀 𝜓𝑚
∗, 𝛯 ) Τ1 𝑃𝑚

3) Robust design accounting for model uncertainty

for given parameter values
• Proposition of a set of M candidate models

• Evaluation of FIM by MC/HMC for each model m

• Evaluation  of D-optimality criterion on each model m

• Use of the Compound D-optimality criterion [3,4]

𝛷𝐶𝐷 𝛯 = ෑ

𝑚=1

𝑀

𝛷𝐷,𝑚 𝛯
𝛼𝑚 = ෑ

𝑚=1

𝑀

𝑑𝑒𝑡(𝑀 𝜓𝑚
∗ , 𝛯 ) Τ𝛼𝑚 𝑃𝑚

4) Robust design accounting for parameter and 
model uncertainties

• Proposition of a set of M candidate models (m=1,...,M)

• Evaluation of robust FIM by MC/HMC for each model m

• Evaluation  of DE-optimality criterion on each model m

• Use of the Compound DE-optimality criterion:

Φ𝐶𝐷𝐸 Ξ = ෑ

𝑚=1

𝑀

Φ𝐷𝐸,𝑚 Ξ
α𝑚 = ෑ

𝑚=1

𝑀

det(𝑀𝑅 𝛯 ) Τα𝑚 𝑃𝑚

Notations

𝑀= population Fisher information matrix

𝑀𝑅 = robust population Fisher information matrix

𝛯 ={N,ξ} = population design , N = number of individuals

𝜉 = elementary design (identical in all individuals)
=> To be optimized

𝜓𝑚 = population parameter values for model m

𝑃𝑚 = number of population parameters of model m

pm(ψm) = a priori population parameter distribution for model m

b = vector of random effects

y = vector of observations for one individual

αm = weight quantifying balance between M models (σα𝑚 = 1)

5) Implementation
• Extension of R package MIXFIM [5] using Stan to draw 

HMC samples and to calculate partial derivatives of the 
log-likelihood [6]

• Robust_fisher_evaluation() function to evaluate 𝑀𝑅(𝛯)

• Combin_optimization() function to perform 
combinatorial optimization of design elements in ξ

• Compound_optimality() function to evaluate the CD 

and CDE-optimality criteria

APPLICATION TO DESIGN OPTIMIZATION FOR COUNT DATA
Count data example

• Daily count of events that we want to 
prevent

• Poisson model for repeated count 

response [2]: 𝑃 𝑦 = 𝑘 𝑏 =
λk e−λ

k!

λ: mean number of events / day

• Each patient observed at 3 dose levels
(one placebo) during x days:
ξ=(d1,d2,d3)

ψm* pm(ψm)

µ1* µ2* µ3* ω1* ω2* µ1 µ2 (CV(µ2)=70%) µ3 ω1 ω2 (CV(ω2)=90%)

M1 1 0.5 0.3 0.3 1 LN(-0.89,0.63) 0.3 LN(-1.50,0.77)

M2 1 0.67 0.3 0.3 1 LN(-0.60,0.63) 0.3 LN(-1.50,0.77)

M3 1 0.96 0.3 0.3 1 LN(-0.24,0.63) 0.3 LN(-1.50,0.77)

M4 1 0.2 0.8 0.3 0.3 1 LN(-1.81,0.63) 0.8 0.3 LN(-1.50,0.77)

M5 1 0.8 0.13 0.3 0.3 1 LN(-0.60,0.63) 0.13 0.3 LN(-1.50,0.77)

RESULTS

Candidate models

• M1 : log 𝜆 = 𝛽1(1 −
𝑑

𝑑+𝛽2
),

• M2 : log 𝜆 = 𝛽1 1 − 𝛽2𝑑 ,

• M3  : log 𝜆 = 𝛽1 1 − 𝛽2 log 𝑑 + 1 ,

• M4  : log 𝜆 = 𝛽1 1 −
𝛽3𝑑

𝑑+𝛽2
,

• M5 ∶ log 𝜆 = 𝛽1(−𝛽2𝑑
2 + 𝛽3𝑑 + 1).

CONCLUSIONS

➢ N=60 subjects, nrep=10 rep/subject/dose
➢ Combinatorial optimization of 2 dose levels 

between 0 and 1 with step=0.1, without 
repetition, with d1=0 (placebo)

➢ For computation of MR: 5000 MC, 200 HMC

➢ Robust design optimization w.r.t. 
parameters and model

β𝑝 = µ𝑝𝑒
𝑏𝑝 and 𝑏𝑝 ~ 𝑁(0,ω𝑝

2)

EDE,1(Ξ) EDE,2(Ξ) EDE,3(Ξ) EDE,4(Ξ) EDE,5(Ξ)
ξDE,1=(0, 0.2, 0.4) 100% 46.9% 56.7% 77.5% 23.6%
ξDE,2=(0, 0.9, 1) 73.3% 100% 100% 43.5% 87.1%
ξDE,3=(0, 0.9, 1) 73.3% 100% 100% 43.5% 87.1%
ξDE,4=(0, 0.1, 0.7) 89.1% 68.1% 73.9% 100% 51.4%
ξDE,5=(0, 0.5, 1) 83.1% 87.8% 89.6% 58.5% 100%
ξCDE=(0, 0.2, 1) 90.9% 83.8% 83.9% 84.6% 82.8%

𝐸𝑋,𝑚 Ξ =
Φ𝑋,𝑚(Ξ)

Φ𝑋,𝑚(Ξ𝑋,𝑚)
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• Proposition of a new MC/HMC-based method for computation of the FIM avoiding 
linearization, introducing robustness w.r.t. parameters and/or models

• First applications to design optimization for count data
• Accounting or not for uncertainty in parameters may lead to different allocations of optimal 

doses but has little impact on efficiencies
• Misspecification of models can lead to low efficiencies
• The CD/CDE-optimal designs provided a good compromise for different candidate models

PERSPECTIVES

• Replacement of MC in MC/HMC by more efficient approach:
quasi-random sampling [7]

• Implementation of a more efficient optimization algorithm

• Combination of these methods with adaptive designs [8]

M1 M2 M3 M4 M5

for X=DE,CDE

Robust design with respect to parameters for each model Robust design with respect to 

parameters and model

ξDE,1=(0,0.2,0.4) ξDE,2=(0,0.9,1) ξDE,3=(0,0.9,1) ξDE,4=(0,0.1,0.7) ξDE,5=(0,0.5,1) ξCDE=(0,0.2,1)


