Using Hamiltonian Monte-Carlo to design longitudinal count studies ! Inserm
accounting for parameter and model uncertainties
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CONTEXT OBIJECTIVES

The Fisher Information Matrix (FIM) can be used to design longitudinal studies for nonlinear + To extend the MC/HMC-based method to evaluate the FIM in NLMEM accounting for
mixed effect models (NLMEM) [1]. A Monte-Carlo Hamiltonian Monte-Carlo (MC/HMC) method uncertainty in parameters and/or in models

designs. This approach however requires a priori knowledge on models and parameters, leading
to design that are only locally optimal.

METHODS

Notations 1) Optimal design for given parameter values ¢, * 2) Robust design accounting for parameter
M= population Fisher information matrix of a given model m uncertainty for a given model m
My = robust population Fisher information matrix e Evaluation of FIM by MC/HMC [2] * Evaluation of robust FIM by MC/HMC
= ={N,&} = population design , N = number of individuals M,,Z) =NxM@,, %) Mp(E) = E;, (M@Wm, 5))
¢ = elementary design (identical in all individuals) B 0 log(L(y, wm)) 0 log(L(y, wm))T - two integrals w.r.t. y and w.r.t. b for evaluation of
=> To be optimized M, §) = Ey, oy, oy, MW, £)
= i - one supplementary integral f luati
Y., = population parameter values for model m with the likelihood L(y, §i ) = fp(ylb, ) p(b|U,) db o Eupp y Integra or evaluation
P_ = number of population parameters of model m \ Y } o‘lf “’9 r(Z)
O . . . - .
p,,(W. ) = a priori population parameter distribution for model m | | P = Evaluation by MC-HMC using Stan (drawing jointly ,
pdf of observations y given random effects b and y by MC)
b = vector of random effects .
=>2 integrals to compute: w.r.t y (MC) and w.r.t b (HMC) * Use of DE-optimality criterion
y = vector of observations for one individual L. .
" P ] M models (5 . * Use of D-optimality criterion Pppm(E) = det(MR(E))l/Pm
a_ = weight quantifying balance between M models (), a,,, = - ¥ o ’
n = weight qu ITYINg W ( m ) qu,m(ﬂ) — det(M(lllm :5))1/Pm
3) Robust design accounting for model uncertainty 4) Robust design accounting for parameter and 5) Implementation
for given parameter values model uncertainties * Extension of R package MIXFIM [5] using Stan to draw
* Proposition of a set of M candidate models (m=1,...,M) HMC samples and to calculate partial derivatives of the

 Proposition of a set of M candidate models
+ Evaluation of FIM by MC/HMC for each model m Evaluation of robust FIM by MC/HMC for each model m

* Evaluation of DE-optimality criterion on each model m

log-likelihood [6]
* Robust_fisher_evaluation() function to evaluate M,(%)

* Evaluation of D-optimality criterion on each model m e Combin optimization() function to perform

by " M M combinatorial optimization of design elementsin ¢
@, (5) = ‘ ‘ @, (’:)am _ ‘ ‘(det(M(l/)* :')))am/pm O p(E) = ‘ ‘ chE’m(E)“m — ‘ ‘(det(MR(E)))am/Pm « Compound_optimality() function to evaluate the CD
cCD\=J — ,m\~ — m» -~
m=1 m=1 m=1 m=1

* Use of the Compound D-optimality criterion [3,4] * Use of the Compound DE-optimality criterion:

and CDE-optimality criteria

APPLICATION TO DESIGN OPTIMIZATION FOR COUNT DATA

Count data example Candidate models P Pm(¥,n)
° Da||y count Of events that we want to M l (/1) ﬁ (1 d ) ul* HZ* HS* (L)]_* wZ* U1 “2 (CV(HZ):7O%) ll3 wl wz (CV((.UZ):QO%)
' lo = ,
prevent 1+ 195 1 d+p; M,| 1] 05 03 |03 1| 2M-0.89,0.63) 0.3| LM-1.50,0.77)
* Poisson model for repeated count * M, :log(d) = B1(1 — Bad), M,| 1 |0.67 0.3 ]03]|1]| ZM-0.60,0.63) 0.3| IM-1.50,0.77)
Ake=2 . : = —
response [2]: P(y = k|b) = 13 M; :log(4) = f: (1 'BZ log(d + 1)), M| 1 | 0.96 0.3 | 0.3 | 1| LM-0.24,0.63) 0.3 | LM-1.50,0.77)
' d
A: mean number of events / day * M, :log(d) = By (1 dfﬁz); M, 1] 020803031 £M-1.81,063) | 0.8 |0.3| LM-1.50,0.77)
° Each patient observed at 3 dose levels Mc] 1 | 08 [013] 03] 03] 1] £mM-060,063) |0.13]|03| LM-1.50,0.77)
(one  placebo) during x  days:
¢=(d1,d2,d3) B, = we’ and b, ~ N(0, w,?)

; | | o » N=60 subjects, nrep=10 rep/subject/dose
! . _ Ma: log(2)=p1(1 B 4 N Wy -k e = . . .
M1:Iog(/-.)=[31(1-d_—ﬁ2) My: log()=p1(1- B,d) ’ log(2)=p+(1 - Balog(d +1)) MG APl n J(7)=B4(1-Bod-Bae » Combinatorial optimization of 2 dose levels

0 5 between 0 and 1 with step=0.1, without
Q _ a5 S = Q|
< e - " - repetition, with d,=0 (placebo)
~ ﬁ:. = < :j .
S < S 2 S < | S < | > For computation of M,: 5000 MC, 200 HMC
B — W © — - o
=, s =f N ol 24 1 » Robust design optimization w.r.t.
00 ' 04 ' 08 | 00 04 0.8 0o 04 08 00 04 08 00 04 08
- e A dose A dose parameters and model
Robust design with respect to parameters for each model Robust design with respect to
parameters and model
M, M, M4. . g 1.0
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0 0 0 078 g @ 07 8
S e 8 S0.6 flosE S §06 1063
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: N [fo.3 | ol [10.3
| | | | "1 : , , ‘ | Niry , ‘ ‘ . Lo ' , , ' . H0.2 ' - ' ' - 0.2 ' '. _- : | H0.2
- Ognd doscza.6 o8 v = 0'24nd dosoe'6 - > >2 0glnd dos%6 - " O;nd dOS%6 o8 - 0glnd dos%6 o o 0.’gnd dos%6 >
_ =(0,0.2,1
£0e 1=(0,0.2,0.4) £0e ,=(0,0.9,1) €, 5=(0,0.9,1) £0r 4=(0,0.1,0.7) € 5=(0,0.5,1) §ce=( )
L P(® CONCLUSIONS
Exm(8) =5 Er ) for X=DE,CDE
AmA=X,m * Proposition of a new MC/HMC-based method for computation of the FIM avoiding
Epe () Epe,(2) Epes(G) Epeo(Z) | Epes(G) inearization, introducing robustness w.r.t. parameters and/or models
Ene 1=(0, 0.2, 0.4) 100% 46.9% 56.7% 77.5% 23.6% * First applications to design optimization for count data
Ene>=(0,0.9,1) 73.3% 100% 100% 43.5% 87.1% * Accounting or not for uncertainty in parameters may lead to different allocations of optimal
&pe2=(0,0.9,1) 73.3% 100% 100% 43.5% 87.1% doses but has little impact on efficiencies
Ene4=(0, 0.1, 0.7) 89.1% 68.1% 73.9% 100% 51.4% « Misspecification of models can lead to low efficiencies
Epes=(0, 0.5, 1) 83.1% 87.8% 89.6% 58.5% 100% e The CD/CDE-optimal designs provided a good compromise for different candidate models
E~pe=(0, 0.2, 1) 90.9% 83.8% 83.9% 84.6% 82.8% PERSPECTIVES
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