Population pharmacokinetics of belimumab in systemic lupus erythematosus: insights for monoclonal antibody covariate modeling from a large data set

Herbert Struemper (1), Wendy Cai (2)

(1) Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline, RTP, NC & King of Prussia, PA, USA; (2) Human Genome Sciences, Rockville, MD, USA.

Introduction

- Belimumab is a recombinant, human immunoglobulin G1 (IgG1) monoclonal antibody (mAb) that targets B-lymphocyte stimulator (BlyS) - BlyS is a cytokine that promotes B-cell selection, survival, and differentiation [1] - Belimumab is indicated for the treatment of adult patients with active, autoantibody-positive systemic lupus erythematosus (SLE) receiving standard therapy - Belimumab is also under investigation in lupus nephritis, membranous nephropathy, antineutrophil cytoplasmic antibodies-associated vasculitides, chronic graft-vs-host disease, myasthenia gravis and other autoimmune related conditions.

Objectives

- Characterize the population pharmacokinetics of belimumab following intravenous infusion in patients with SLE - Identify factors contributing to the pharmacokinetic variability

Methods

Data

- PK data from one Phase I, 1 Phase II, and 2 Phase III studies with a total of 1603 patients and 8143 observations:
 - Phase I: single dose or 2 doses 28 days apart, 1, 10, and 20 mg/kg. N=57 (Clinical Trials.gov registry number: NCT00657007)
 - Phase II: Multiple doses on d 0, 14, and 28, and then every 28 d; 1, 4, and 10 mg/kg. N=424 (NCT00714187)
 - Phase II (BLISS-52): Multiple doses on d 0, 14, and 28, and then every 28 d through 72 wk, 1 and 10 mg/kg. N=578 (NCT00424476)
 - Phase III (BLISS-76): Multiple doses on d 0, 14, and 28, and then every 28 d through 72 wk, 1 and 10 mg/kg. N=544 (NCT00410384)

PK Modeling

- Non-linear mixed effects modeling approach using NONMEM® (ADVAN®): Models were prioritized using objective function values, mechanistic plausibility of parameters, and performance in visual predictive checks.
- Stepwise covariate model building assumed a 0.001 level significance threshold for forward addition and backward elimination.
- Main model developed with categorical proteinuria covariate (< or ≥ 2 g/day); subsequent modeling included continuous proteinuria covariate.

Results

- Exposure was approximately dose proportional and well characterized by a linear-two-compartment PK model with CL from central compartment with a terminal half-life of 19 days, Vss of 5.3 L and CL of 0.22 L/day for the 10 mg/kg dose in the Phase III trials (Fig. 1).
- 16 covariate effects of which 9 were related to patient characteristics were identified.
- Baseline BLyS level was not identified as a statistically significant covariate confirming other evidence that target mediated disposition did not have a substantial effect for tested dose levels (see [2] for more detail).

Proteinuria effect on CL

- After proteinuria status (< or ≥ 3 g/day) was identified as a significant covariate, the effect of proteinuria as a continuous variable was analyzed in separate model
- A linear relationship best described proteinuria effect on the typical value of CL (TVCL) among functional relationships tested (Fig. 3):
 - TVCL = TVCLpairs proteinuria effect + 17.8 mL/g proteinuria
- Effect of CL relatively minor in tested SLE population
- Larger effect size predicted for patient populations with larger levels of proteinuria (membranous nephropathy, etc.) e.g.: - 10 g proteinuria → 89% increase in CL → 47% decrease in AUC relative to belimumab CL with negligible proteinuria

Conclusions

- Belimumab PK in SLE was well characterized by a linear-2 compartment PK model; PK parameters were consistent with other IgG mAbs.
- Effect of proteinuria on CL was identified in SLE population, which might be clinically relevant for disease populations with higher levels of proteinuria. Further evaluation is underway in membranous nephropathy.
- Effect of IgG on CL was detectable in the SLE population (hypergammaglobulinemia trend) and consistent with hypothesis and data for generation of the neonatal Fc receptor (FcRn) recycling at high endogenous IgG levels [4].
- Effect of baseline albumin (BALB) on CL not inconsistent with IgG effect as albumin binds to a different epitope of FcRn and therefore does not compete with IgG for FcRn binding [4].
- Effect of HBG on TV1 was detectable and qualitatively consistent with decreased serum volume due to increased hematocrit (estimated effect was approx. half the effect predicted with assumption of hematocrit [%] × 3 x HBG [g/dL]).
- None of the covariate effects were found to require dose adjustment in the SLE population.

References

Acknowledgments

At the time this work was initiated Herbert Struemper was employed by GlaxoSmithKline (GSK), the current sponsor of the study. The authors wish to thank Craig Chen, Thi-Buu Mignon, Kevin Kuch, Rosanna Jewel, and Peter Borchard.

Fig. 1: Observed vs simulated belimumab conc.

Fig. 2: Observed vs simulated belimumab conc.

Fig. 3: Baseline proteinuria vs CL (post-hoc parameter estimates) in Phase 3 subjects for model with continuous proteinuria effect (red line; Loess fit; blue line: effect based on population parameters).

Fig. 4: Baseline IgG concentration vs half-life (post-hoc parameter estimates) in Phase 3 subjects with <0.5 g/day proteinuria receiving 10 mg/kg belimumab (red curve; Loess fit; blue curve: half-life based on population parameters and estimated IgG effect; compare to [4] Fig. 8).