

Handling frequent observations of composite scores: Application to PROs in COPD

8 June 2017, PAGE conference

Eva Germovsek (1), Claire Ambery (2), Shuying Yang (2), Misba Beerahee (2), Mats Karlsson (1), Elodie Plan (1)

Affiliations: (1) Uppsala University, Sweden; (2) GlaxoSmithKline, UK

What this talk is about

- For the 1st time: extended **IRT modelling** with the **Markov models (MM)**
- MM needed due to frequent and therefore correlated observations
- Exemplified with COPD patient data

COPD

Chronic Obstructive Pulmonary Disease

TOP 5

- top 5 disease burden worldwide (1,2)
- 3 mil deaths/year (3)

EXACERBATIONS

- faster decline of pulmonary
 function
- t risk of cardiovascular events
- ↓ quality of life
- hospital admissions, morbidity & mortality

WHAT?

- progressive airflow obstruction
- inflammatory disease of the lung

¹Prince *et al.*, Lancet, 2015. **385**: 549-62. ²Lozano *et al.*, Lancet, 2012. **380**: 2095-128. ³Rabe *et al.*, Lancet, 2017. **389**: 1931-40.

Patient reported outcomes (PRO)

- PRO data¹
 - Patient's health status reports
 - Directly from the patient, not altered by anyone
 - Increasingly used in drug development & to inform clinical decisions
 - Collected using questionnaires, i.e. EXAcerbations of COPD Tool (EXACT) questionnaire²

EXACT questionnaire

- Daily electronic diary
- Standardised approach for assessing the symptomatic manifestations of COPD exacerbations
- 14 items (score: 0-3/4)
- ↑ score → ↑ severe symptom

item	description	scale	domain
7	we	0-4	breathlessness
8	de	0-3	breathlessness
9	we	0-4	breathlessness
	pe		
10	we	0-3	breathlessness
	inc		
11	we	0-3	breathlessness
	act		
1	dic	0-4	chest symptoms
5	dic	0-4	chest symptoms
6	dic	0-4	chest symptoms
2	ho	0-4	cough and sputum
3	ho	ay 0-3	cough and sputum
4	ho	0-4	difficulty with sputum
12	we	0-4	tired or weak
13	las	0-4	sleep disturbance
14	ho	v 0-3	psychological state

Analysis of PRO data

- Two main approaches:
 - Standard approach: total-score based approach
 - Sub-scores ignored \rightarrow potential information loss
 - Alternative approach: item response theory (IRT) models
 - All sub-score data used

- Acute Exacerbation and Respiratory InfectionS in COPD (AERIS) study^{1,2}
- Single centre
- Standard-of-care
- M/F 40-85 years
- ≥ moderate COPD
- N=127 IDs
- 14 items: 4/5 categories
- ~ 40,000 observations per item
- ~ 4,000-5,000 observations per subject

¹Bourne *et al.*, BMJ Open, 2014. **4**(3): e004546. ²Wilkinson *et al.*, Thorax, 2017. doi:10.1136/thoraxjnl-2016-209023

Problem

- Information from several individual elements
- Daily observations → dependence between consecutive observations
- → Aim: Develop a model to describe and learn from these type of (PRO) data

Outline

- Intro to the problem
- How to solve the problem
- Evaluation & Application
- Conclusion

- Probabilities of an observation modelled
- Probability of a response to an item related to a latent variable¹ (e.g. COPD disease severity)
- This methodology was used in different disease areas, e.g.
 Alzheimer's disease¹, schizophrenia², multiple sclerosis³; however, no MM

$$logit P(Y_{ij} \ge k) = a_j \cdot (D_i - b_j)$$

¹Ueckert *et al.*, Pharm Res, 2014. **31**(8): 2152-65 ²Krekels *et al*, CPT PSP, 2017; doi: 10.1002/psp4.12207 ³Novakovic *et al*, AAPS J. 2017;19(1):172-179

An individual example

Study day

Data: transitions

0

1

2

3

4

UPPSALA UNIVERSITET

Study day

12

No Markov elements

• No-MM:

Markov models

- Observation depends on the previous observation (i.e. state)
- Based on compartment or transition probabilities
- Minimal Markov models used¹:
 - Transitions between neighbouring scores
 - Mean equilibrium time (MET) assumed the same between different states

$$\lambda_{(k-1,k)} = \left(MET \cdot \left(1 + \frac{P\left(Y_{ij} = k - 1\right)}{P\left(Y_{ij} = k\right)} \right) \right)^{-1}$$

IRT + Markov models

→ score 3

- Intro to the problem
- How to solve the problem
- Evaluation & Application
- Conclusion

Time (days)

MET=mean equilibrium time IIV= inter-individual variability *on the variance scale

Sub-score VPC (all items)

Total score VPC

Mean (standard error) slope*: -0.18 (0.13) year⁻¹; 1.85** (0.60) IIV

*on the latent variable scale **on the variance scale IIV= inter-individual variability

Item characteristic curves

UPPSALA

Item information

Item information: 5th and 95th percentiles

Item residual correlation plot

ltem

23

Outline

- Intro to the problem
- How to solve the problem
- Evaluation & Application
- Conclusion

Conclusion

- First mixed-effects IRT model with longitudinal Markov elements was developed
- The model was able to handle both composite scores & frequent observations – as shown on the example of COPD sub-score data from the EXACT questionnaire
- An addition of Markov models to an IRT model is expected to be needed with similar types of data

Acknowledgements

Thank you for your attention!

eva.germovsek@farmbio.uu.se

GSK funded study (114378/NCT01360398) I have no conflicts of interest