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Many clinical trials use time-to-event (TTE) outcomes as primary measures of 
efficacy or safety. For instance, in dose finding cancer trials the goals may be to 
estimate a dose-response relationship and to identify a dose level that yields 
the longest progression-free survival for testing in subsequent studies. Efficient 
designs for such trials are needed but finding such designs in practice may be 
complicated due to uncertainty about the model for event times, delayed 
responses and censored observations. In this work we develop optimal and 
adaptive designs for dose finding clinical trials with TTE outcomes .
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Table 1 shows that when data is censored the D-optimal design is shifted from 
the uniform. D-optimal designs approach the uniform design when censoring 
time increases. The proposed adaptive optimal designs generate the allocation 
of patients to the most informative dose levels and achieve higher efficiency in 
estimating the parameters of interest compared to the popular equal allocation 
designs in the presence of censoring.  The adaptive designs perform nearly as 
well as the optimal designs. In Fig. 1 we compare uniform, D-optimal and 
adaptive D-optimal designs simulated 1000 times for the one of the scenarios.  
The uniform design is clearly inferior, while the adaptive and d-optimal designs 
are similar. Results of 1000 simulations of adaptive D-optimal designs for the 
rest of scenarios are depicted in Fig. 2 and show good properties. Fig. 3. shows 
that accuracy of the estimation depends on how much censored data we have. 
Numerical simulation shows that the estimation is poor for all designs when 
<45% of patients respond. 

The proposed designs can improve efficiency of clinical trials with time-to-event 
outcomes by reasonable allocation of study patients to dose levels that are most 
informative for the given study objectives. Adaptive designs can be used to 
approximate the optimal designs; however, if too much data is censored the 
estimation of the model parameters is inefficient. Further research on 
the robustness of the proposed designs to model misspecifications and 
uncertainties around model parameters is ongoing. In addition, dose-
concentration-response TTE models will be considered.

We consider an accelerated failure time (AFT) model [1] assuming a quadratic 
dose-response model for log-transformed TTE outcomes with a Weibull 
distribution that are subject to right censoring with a fixed censoring time. The 
optimal designs for the quadratic model with normally distributed error term are 
considered in [2] for D-optimality and in [3] for c-optimality but, to our 
knowledge, the AFT model with censored data has not been considered 
previously. The model has the following form:  

logT = β0 + β1x + β2x2 + bε,  
t = min(T, τ) — observed time, 

where τ is censoring time, x is dose, ε has a p.d.f. f(w) = exp(w-exp(w)) with 
E(ε) = -γ = -0.577216 and Var(ε) = π2/6.  
      We obtain the D-optimal design for the most precise estimation of the dose-
response curve applying the general equivalence theorem [4], while including 
fixed right censoring [5]. The design depends on the parameters of the model 
which are unknown at the beginning of the experiment. As a consequence, for 
implementing optimal designs in practice, we propose a multi-stage adaptive 
design. To resolve this issue we start from uniform design (three-points design 
with equal allocations, which is D-optimal when there is no censoring). Some 
initial number of patients are randomised with such a design. When these 
subjects respond, we do Maximum Likelihood Estimation of the model 
parameters and then define a new design that depends on the parameters’ 
MLE. Then we either can use this design till the last subject (two-stage design) 
or reestimate it multiple times (multi-stage design). In this work we apply a 3-
stage adaptive design to simulate 4 different scenarios of dose-response 
relationships (4 sets of model parameters) in 1000 simulations of a trial with 45 
subjects divided into three cohorts of 15 subjects per cohort, and we do 
adaptation after every cohort. Relative D-efficiencies of the D-optimal and 
adaptive D-optimal designs comparing to the uniform design are studied:  

Deff  = |FIM(ξ*, θ)|1/k / |FIM(ξU, θ)|1/k, 
where θ = (β0, β1, β2, b) — vector of model parameters, ξU — uniform design,  
ξ* — optimal design, k — number of model parameters.

Fig. 1. Dose-response curves and boxplots of relative errors of model parameters for simulated uniform 
design, d-optimal design and adaptive d-optimal design for beta = (0.5, 2, 2), and tau = 10

Fig. 2. Dose-response curves and boxplots of relative errors of model parameters for simulated adaptive d-
optimal design of 3 scenarios

Fig. 3. Estimation when data is too censored (left) and >45% of subjects respond (right).

Scenario #1 
θ = (1.5, 4.0, -2.0, 0.5)

Scenario #2 
θ = (0.5, 2.0, 2.0, 0.5)

Scenario #3 
θ = (0.5, 2.0, -2.0, 0.5)

Scenario #4 
θ = (1.5, -2.0, 2.0, 0.5)

τ Design Deff Design Deff Design Deff Design Deff

5 x = (-1, -0.17, 1) 
w = (0.38, 0.37, 0.25)

1.16/1.15 x = (-1, -0.32, 0.37) 
w = (0.35, 0.35, 0.30)

2.34/2.32 x = (-0.37, 0.32, 1) 
w = (0.30, 0.35, 0.35)

2.34/2.32 x = (-1, 0.23, 1) 
w = (0.30, 0.35, 0.35)

1.10/1.10

10 x = (-1, -0.04,  1) 
w = (0.38, 0.37, 0.25)

1.02/1.01 x = (-1, -0.25, 0.5) 
w = (0.35, 0.35, 0.30)

2.04/1.99 x = (-0.5, 0.25, 1) 
w = (0.30, 0.35, 0.35)

2.04/2.00 x = (-1, 0.4, 1) 
w = (0.32, 0.34, 0.34)

1.01/1.00 

20 x = (-1, 0, 1) 
w = (0.38, 0.37, 0.25)

1.01/1.01 x = (-1, -0.18, 0.64) 
w = (0.34, 0.34, 0.32)

1.67/1.65 x = (-0.64, 0.18, 1) 
w = (0.32, 0.34, 0.32)

1.67/1.66 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 

40 x = (-1, 0, 1) 
w = (0.37, 0.37, 0.26)

1.01/1.00 x = (-1, -0.12, 0.77) 
w = (0.34, 0.34, 0.32)

1.35/1.34 x = (-0.77, 0.12, 1) 
w = (0.32, 0.34, 0.34)

1.35/1.34 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 

80 x = (-1, 0, 1) 
w = (0.35, 0.34, 0.31)

1.01/1.00 x = (-1, -0.05, 0.89) 
w = (0.34, 0.34, 0.32)

1.10/1.10 x = (-0.89, 0.05, 1) 
w = (0.32, 0.34, 0.34)

1.10/1.10 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 

∞    x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 x = (-1, 0, 1) 
w = (0.33, 0.33, 0.33)

1/1 

Table 1. D-optimal designs of four scenarios and relative D-efficiency of D-optmal design/median of relative D-
efficiencies of adaptive D-optimal design.  x is a vector of optimal design points, and w is a vector of optimal 
proportions.
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Dose−response curve (Adaptive D−optimal design),
 beta = (0.5, 2.0, 2.0), tau = 10.0

Dose

lo
g(

T)

true
estimated via avegafe of 1000 simulations
estimated via 1 simulation

β0 β1 β2 b

−0
.5

0.
0

0.
5

1.
0

Errors of model parameters (Adaptive D−optimal design),
 'true' values: beta = (0.5, 2.0, 2.0), b = 0.5

R
el

at
ive

 e
rro

r

−1.0 −0.5 0.0 0.5 1.0

−4
−2

0
2

4

Dose−response curve (Adaptive D−optimal design),
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Dose−response curve (Adaptive D−optimal design),
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Dose−response curve (Adaptive D−optimal design),
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Dose−response curve (Adaptive D−optimal design),
 beta = (4.5, −2.0, −2.0), tau = 10.0
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Errors of model parameters (Adaptive D−optimal design),
 'true' values: beta = (4.5, −2.0, −2.0), b = 0.5
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Dose−response curve (Adaptive D−optimal design),
 beta = (4.5, −2.0, −2.0), tau = 40.0
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