

A unified *in vivo* modeling approach for quantitative prediction of the impact of gene polymorphism and drug interactions on drug exposure

Sylvain Goutelle , Michel Tod, Laurent Bourguignon, Nathalie Bleyzac , Johanna Berry, Fannie Clavel-Grabit, and the Genophar II working group

University Hospitals of Lyon; UMR CNRS 5558, University of Lyon 1; Department of Pharmacology, School of Pharmacy, University of Lyon 1, Lyon, France

Population Approach Group in Europe, 21st annual meeting, Venice, 5-8 June 2012

Drug Interactions and Gene Polymorphism

- Cytochrome P450 (CYP) are key enzymes in drug metabolism
- CYP-mediated drug interactions (DDI) and CYP gene polymorphism are major determinants of variability in drug exposure in patients
- For a substrate drug of a polymorphic CYP, it is desirable:
 - To predict the magnitude of DDI (induction or inhibition)
 - To predict the change in drug exposure in poor (PM) and ultra-rapid
 (UM) metabolizers with respect to extensive metabolizers (EM)
- For DDI, mechanistic and PBPK models based on *in vitro* data have been proposed but are rather complex (Fahmi, 2009)

Drug Interactions and Gene Polymorphism

Alteration in drug exposure caused by DDI or gene polymorphism is essentially the same matter:

"the difference in drug exposure between EM and PM subgroups would generally represent the most extreme change that could be caused by a strong inhibitor of that pathway"

"for example, an individual who is a CYP2D6 EM may be converted de facto CYP2D6 PM by concomitant administration of a strong CYP2D6 inhibitor"

FDA Guidance, Clinical Pharmacogenomics, Feb 2011

- The objective of this study is to propose a general framework for *in vivo* quantitative prediction of the impact of gene polymorphism and DDI on CYP substrate drug exposure
- An application to drugs metabolized by CYP2C19 is presented

Methods: Pharmacological Basis

In 2007, Ohno et al. proposed the following model for inhibition:

$$R_{AUC} = \frac{AUC^*}{AUC} = \frac{1}{1 - CR_{CYP} \cdot IR}$$
 Equation

 $\mathbf{R}_{\mathbf{AUC}},$ AUC increase of the CYP substrate drug

IR, the inhibition ratio is a measure of inhibitor potency based (range, 0-1)

CR, the **contribution ratio**, is the *in vivo* equivalent of the fraction metabolized by a given cytochrome (range, 0-1)

In 2011, we proposed a similar model for CYP gene polymorphism :

$$R_{AUC} = \frac{AUC^{XM}}{AUC^{EM}} = \frac{1}{1 - CR_{CYP} \cdot (1 - FA)}$$
 Equation 2

FA, **the fraction of activity** characterizes the relative activity of the CYP FA = 1 in **EM**, FA < 1 in **PM**, FA > 1 in **UM** subjects

Methods: Data and Analysis

A three-step approach: learning, confirming, predicting

Methods: Data and Analysis

For **drug interaction** data

- Similar three-step approach based of PK interaction studies
- **CR values fixed** at their point estimates from the previous analysis
- Goodness-of-fit and predictive performance
 - Proportion of predicted AUC ratio out of 50-200% range of observed value ≤ 10%
 - Mean error and mean absolute error of prediction of AUC ratio

Model extrapolation

Predicted AUC ratios for unpublished CYP2C19 substrate/genotype and substrate/inhibitor pairs

Methods: Bayesian Modeling

 For each substrate/genotype pair, each variable (AUC ratio, CR, FA) was considered as a random variable

$$R_{AUC(i,j)} = \frac{1}{1 - CR_{CYP2C19(i)} \cdot (1 - FA_j)}$$

$$R_{AUC} \sim N (\mu_{AUC}, tau_{AUC}) \qquad \text{Logit}(CR) \sim N (\mu_{CR}, tau_{CR}) \qquad \text{Logit}(FA) \sim N (\mu_{FA}, tau_{FA})$$

- The initial estimates of CRs and FAs and the mean observed AUC ratios were used as means of the prior distributions µ
- Moderatly informative prior gamma distributions were set for the precisions tau
- Posterior distributions of R_{AUC}, CRs and FAs were calculated by MCMC in Winbugs 1.4
- Convergence and shape of posterior distributions were examined
- For **DDI**, same approach, except **fixed CRs**

Results: CYP2C19 Gene Polymorphism

> 99 AUC ratios were available from 42 studies:

- > 25 CYP2CI9 oral substrate drugs
- 5 genotypes: *1*2 (IM) , *2*2 (PM), *17*17 (UM), *1*17, *2*17
- Reference genotype: *I*I (EM)

Step 2: External validation

Results: CYP2C19 Gene Polymorphism

Step 3: Final Estimation

Results: CYP2C19 Gene Polymorphism

Drug	CR	90% CI	Drug	CR	90% CI
Mephobarbital R	0.99	0.99-1.0	Pantoprazole	0.80	0.76-0.83
Proguanil	0.89	0.87-0.90	Lansoprazole R	0.74	0.68-0.79
Lansoprazole S	0.87	0.85-0.88	Voriconazole	0.68	0.60-0.74
Omeprazole	0.84	0.82-0.86	Escitalopram	0.45	0.33-0.57
Diazepam	0.84	0.81-0.86	Amitriptyline	0.28	0.18-0.40

Genotype	Frequency in Caucasians	Phenotype	FA	90% CI
*2*2	2.8%	PM	0.005	0.002-0.008
*I*2	16.4%	IM	0.30	0.25-0.36
*2*17	3.2%	Unknown	0.80	0.50-1.19
* * 7	22.8%	EM	1.59	1.24-1.85
* 7* 7	2.8%	UM	2.03	1.28-2.62

Results: CYP2C19-mediated DDI

22 AUC ratios from 18 studies (10 inhibitors)

Final estimation + Initial Estimation Initial estimation 100 (step 2) N=13 **Predicted AUC Ratio** ME = -1.210 MAE = 1.76**Final estimation** (step 3) 1 N=22 ME = -0.62MAE = 1.050.1 0.1 1 10 100 3 outliers (13.6%) **Observed AUC Ratio**

Results: CYP2C19-mediated DDI

Inhibitor	Daily dose (mg)	IR	90% CI
Fluvoxamine	50 – 150	0.98	0.95-0.99
Fluconazole	100 – 400	0.78	0.62-0.90
Voriconazole	400 – 800	0.64	0.43-0.82
Moclobemide	300	0.61	0.39-0.80
Ticlopidine	300	0.51	0.29-0.72
Fluoxetine	60	0.44	0.24-0.66
Omeprazole	40 - 80	0.43	0.24-0.64
Clopidogrel	75	0.28	0.13-0.48
Pantoprazole	80	0.26	0.12-0.45

Results: Extrapolation

The model provides predictions of the AUC ratio for all possible substrate/ genotype (n=125) pairs, including rare genotypes

• PM *2*2 • UM *17*17

Results: Extrapolation

- Predictions of the AUC ratio available for a number of unpublished cases
- DDI with potential clinical relevance may be identified

nazole CYP2C19 inhibitors ranked by ne Inhibition Ratio (IR) values

Discussion

- In the past, this in vivo quantitative approach has been applied to DDI and gene polymorphism separately (CYP3A4, CYP2D6), with good predictive performance (Ohno, Tod)
- Sequential unified approach for CYP2C19
- Limitations of the study
 - Few published data on rare genotypes *1*17 and *2*17
 - Few published data on DDI
- Limitations of the approach
 - One cytochrome pathway (at a time)
 - Oral drugs
 - Linear pharmacokinetics

- Competitive inhibition
- Average prediction of AUC ratio
- Prediction of DDI in EM only

Ohno et al. Clin Pharmacokinet 2007,46:681 & Clin Pharmacokinet 2008,47:649 Tod et al. Clin Pharmacol Ther 2011, 90:582 & Clin Pharmacokinet 2011, 50:519

Discussion

Proof-of-concept of the FDA statement

- Information from CYP genetic subgroups may be used to predict drug interactions (and vice-versa)
- Contribution ratio: common parameter in both equations

Implications for routine patient care

- Prediction of AUC changes in hundreds of clinical situations
- Predicted AUC ratios may be used by clinicians to adjust the dose regimens of CYP substrate drugs in clinically relevant situations

Implications for new drug development

- The contribution ratio is an informative parameter to be determined
- Pre-clinical screening of DDI and gene polymorphism effect

Future developments

Prediction of DDI in CYP mutants PM or UM