

New models for handling correlated underdispersed Likert pain scores

Elodie L. Plan and Mats O. Karlsson

Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden.

Background

Pain intensity assessment

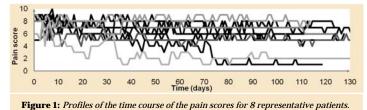
- Rating scales,
- From 0 (no pain) to 10 (worst possible pain),
- Among 11 scores with the Likert Scale.

I1-point ordered categorical data modelling

 \bullet Models adapted to fit and simulate non negative [0,10] integer values ^1,

• Models taking into account serial correlation between observations (psychological tendency to report same or similar score as previously done).

<u>Objective</u> → To develop model(s) for 11-point pain data


Methods

\varTheta Data

• Likert pain scores from placebo arm of a clinical study,

• Collected from 231 patients suffering from painful distal diabetic neuropathy,

· Consisted of daily diary entries over 18 weeks.

Models

• Generalized Poisson model² right-truncated at 11 (LAPLACE -2LL in NONMEM VI):

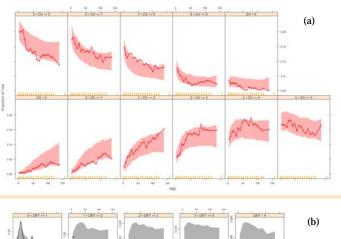
$$P(Y_i = y) = \frac{\lambda_i (1 - \delta_i) \times (\lambda_i (1 - \delta) + y \delta_i)^{y-1} \times e^{-(\lambda_i (1 - \delta) + y \delta_i)} / y!}{\sum_{n=0}^{10} P(n)}$$

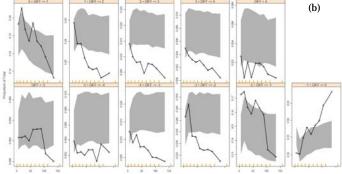
Open 1st order Markov elements incorporated, inflating the probabilities of subsequent scores to be equal, ± 1 , ± 2 or ± 3 to the preceding one.

• Compared to a continuous model logit transformed (FOCEI in NONMEM VI):

$$Y = 10 \times \frac{e^{\ln(\frac{\lambda i}{1-\lambda i})+\varepsilon}}{1+e^{\ln(\frac{\lambda i}{1-\lambda i})+\varepsilon}}$$

Auto-correlation in time introduced for the residual error model, correlating ϵ_s with an AR1 model.


Results


Time course of the mean score

• Described with an exponential placebo function:

$$\lambda = \text{Baseline} \times \left(1 - \text{E}\max(1 - e^{(-\ln(2)/T^{1/2}*time)})\right)$$

Estimates were 6.13 & 6.27 Likert scores for Baseline, 22.4 & 16.9 % for Emax and 38.4 & 29.4 days for T¹/₂, with the generalized Poisson & the continuous model, respectively. • Evaluated with a Visual Predictive Check³ (VPC) :

Figure 2: Categorical VPCs of the Likert scores (a) and the differences between subsequent $[S_n$ - $S_{n-1}]$ scores (b) versus time (days) comparing proportions of the observations (lines) and 95 % confidence interval of 500 simulations (areas) performed with the generalized Poisson model.

Transitions between scores

• Estimates were $P(S_n=S_{n-1}) = 76$ %, $T^{1/2}_{correlation} = 0.75$ days.

Conclusions

- → 2 models to describe observed Likert scores.
- → Novel features to handle serial correlation.

References

- 1 Plan *et al.* Eleven ordered categories data: which modelling options? *PAGE* 2009.
- ² Yang *et al.* Testing approaches for overdispersion in poisson regression versus the generalized poisson model. *Biometrical journal* 2007.
- ³ Karlsson & Holford. A Tutorial on Visual Predictive Checks. *PAGE* 2008.

Acknowledgment: UCB Pharma for kindly providing the data