Longitudinal Model-Based Meta-Analysis (MBMA) for rheumatoid arthritis with Monolix

Géraldine Ayral, Jonathan Chauvin

(1) Lixoft, Antony, France. Contact: geraldine.ayral@lixoft.com

Introduction

MBMA uses published aggregate data from many studies to develop a study-level model and support the decision process.

The problem can be formulated as non-linear mixed effect model with a between study variability (BSV, equivalent to IIV), between treatment arm variability (BTAV, equivalent to IOV) and a residual error. The BTAV and residual error must be weighted by the number of individuals per arm.

How to implement a MBMA model in Monolix?

We propose a case study inspired from Demin et al. (2012), focusing on the drug Canakinumab, a candidate for rheumatoid arthritis (RA). As surrogate for efficacy we use the ACR20, the percentage of patients achieving 20% improvement.

Does Canakinumab has a chance to be more efficacious than Adalimumab and Abatacept, which are already on the market?

Model formulation

To model the ARC20 (in [0,100]), we propose an Emax model:

$$\begin{cases} \operatorname{logit}(y_{ijk}) = \operatorname{logit}\left(\operatorname{Emax}_{ik}\frac{t}{t+\mathrm{T50}_{ik}}\right) + \underset{\text{res. error}}{\varepsilon_{ijk}} & \varepsilon_{ijk} \sim \mathcal{N}\left(0, \frac{\sigma^2}{N_{ik}}\right) \\ \operatorname{logit}(\operatorname{Emax}_{ik}) = \operatorname{logit}\left(\operatorname{Emax}_{\mathrm{pop},d}\right) + \eta_i^0 + \eta_{ik}^1 \\ \operatorname{log}(\mathrm{T50}_{ik}) = \operatorname{log}(\mathrm{T50}_{\mathrm{pop},d}) & \swarrow \\ & \mathsf{BSV} & \mathsf{BTAV} \end{cases} & \eta_i^1 \sim \mathcal{N}\left(0, \frac{\gamma^2}{N_{ik}}\right)$$

with i = study, j = time, k = treatment arm, d = drug

- > observations in the data set and predictions in the model must be transformed due to weightening of residual error by N_{ik}
- parameters with BSV/BTAV must be decomposed into the fixed effect, the BSV and the BTAV term and reformed in the model file, to take into account the weightening of BTAV by N_{ik}

pred = logit(ACR20)*sqrt(Narm) OUTPUT:

output = pred

Model results

The model properly captures the study-level data of the ACR20 for the three drugs.

The estimated parameter values and RSE are:

Simulations for decision support

We compare the true efficacy (over an infinitely large population - BSV, BTAV and residual error were removed) of Canaki versus Abata and Adali, taking into account the uncertainty of population parameters.

Available online

full case study with downloadable material

guidelines to implement your own MBMA model

www.lixoft.com