Contact: s.e.berends@amc.uva.nl

A Target-Mediated Drug Disposition model for infliximab in patients with Ulcerative Colitis S.E. Berends^{1,2}, T.J. van Steeg³, M.J. Ahsman³, G.R.A.M. D'Haens², R.A.A. Mathôt¹

¹ Department Hospital Pharmacy, Academic Medical Center Amsterdam, the Netherlands

² Department of Gastroenterology, Academic Medical Center Amsterdam, the Netherlands

Background	Methods
Ulcerative Colitis (UC) is an inflammatory bowel disease (IBD) affecting the colon and rectum of the gastrointestinal tract.	 Prospective cohort study 20 patients, anti-TNF naive, UC

Infliximab (IFX) is an intravenously administered **monoclonal antibody (mAb)** directed against the pro-inflammatory cytokine tumor necrosis factor (TNF). **Target-mediated drug disposition (TMDD)** is reported for mAbs meaning that the pharmacokinetics of mAbs are affected because of their high target affinity [1,2]. **The objective of this study is to characterize the pharmacokinetics of IFX in patients with UC**.

- IFX (5 mg/kg): week 0, 2 and 6
- IFX, antibodies-to-IFX (ATIs) and TNF serum concentrations were measured

am

 NONMEM (FOCE+I): A population pharmacokinetic model was developed to describe pharmacokinetics of IFX. Next, a TMDD was developed to describe the target-dependent pharmacokinetics of IFX.

Results

PK model

- A two-compartment model best described the concentration-time profiles of IFX.
- As a binary covariate the formation of ATIs increased clearance 2.3-fold. Patients with low albumin serum concentrations exhibited higher clearance.

$$CL = 0.396 \times (ALB/_{20})^{-1.07} \times (2.3 \times ATI)$$

Figure 1: Schematic TMDD model. Ksyn and kdeg represent the synthesis and degradation rate of R, respectively. Bmax represents the baseline of R (ksyn/kdeg). Kon and koff are the association and dissociation rate constants (kd=koff/kon) and kint is the internalization rate constant of the complex.

TMDD model

 In the TMDD model (figure 1 and 2), estimates for BMAX and KD were 0.0983 nM and 1550 nM, respectively.
 Estimated TMDD parameters of the preliminary TMDD model were within the expected range.

Table 1: PK and TMDD parameter estimates

	PK model	TMDD model
Parameter	Estimate (RSE)	Estimate (RSE)
CL (L/day)	0.396 (7%)	0.451 (5%)
Vc (L)	3.2 (5%)	3.04 (5%)
Vp (L)	1.8 (28%)	1.83 (22%)
Q (L/day)	0.344 (37%)	0.293 (25%)
ATI-CL	2.3 (18%)	1.27 (19%)
ALB-CL	-1.07 (33%)	-2.01 (13%)
IIV – CL (%)	29.6 (18%)	_
IIV – Vc (%)	21.4 (16%)	_
IIV – Vp (%)	59.7 (22%)	_
Additive error	0.208 (14%)	0.352 (10%)
Bmax (nM)	-	0.0983 (5%)
Kd (nM)	-	1550 (5%)
Kon ((nmol/L) ⁻¹ /day)	_	106000 (20%)
Kdeg (day ⁻¹)	-	0.086 (21%)
Kint (day ⁻¹)	-	0 (-)

Figure 2: Predicted TNF vs. observed TNF (left), Predicted IFX vs. observed IFX (right) . Lines represent predicted concentrations, dots represent observed concentrations

References:

[1] Dua P, Hawkins E, van der Graaf P. A Tutorial on Target-Mediated Drug Disposition (TMDD) Models. CPT Pharmacometrics Syst Pharmacol. 2015;4(6):324–37.

[2] Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009;5(7):803–12.

Conclusions

The formation of ATIs and low serum albumin levels increased clearance. A preliminary TMDD model was developed to describe the target-dependent pharmacokinetics of IFX. The TMDD model will be further developed.