III-51

Population Pharmacokinetic Modeling of Sofosbuvir, an NS5B Polymerase Inhibitor, and Its Metabolites in Patients With Hepatitis C Virus Infection Feng Jin,¹ Brian Kirby,¹ Yuying Gao,² Brian Kearney,¹ Anita Mathias¹

¹Gilead Sciences, Inc., Foster City, California, USA; ²Quantitative Solutions, Menlo Park, California, USA

GILEAD

> **Gilead Sciences**, Inc 333 Lakeside Drive Foster City, CA 94404 800-445-3252

Introduction

Results

Integrated mechanistic PK model for SOF

- SOF absorption in the gut as SOF, GS-566500, and GS-331007 according to the fractions F1, F2, and F3, where F1 + F2 + F3 = 1
- Analytes absorbed into central volumes VSOF, V500, and VC007 by 1st-order rate constants kaSOF. ka500, and ka007. respectively, with additional absorption lag times
- SOF is metabolized into GS-566500, GS-566500 is metabolized into GS-331007, and GS-331007 (with a peripheral distribution compartment) is cleared from the body

Significant Covariates in Final Model

Sofosbuvir

- Sex was identified as a significant covariate for SOF clearance (CL) Drug absorption was slower
- (lower Ka) in the presence of food

GS-566500

 CRCL was identified as a significant covariate for GS-566500 CL

GS-331007

- Sex and CRCL were identified as significant covariates for GS-331007 CL
- Sex was identified as a significant covariate for GS-331007 volume of distribution
- Drug absorption was slower (lower Ka) in the presence of food and faster (higher Ka) with concomitant administration of methadone

 $KASOF_i = exp(\theta_1 + \theta_{20} \cdot fasted + \eta_{KASOF})$ $CLSOF_i = exp(\theta_4 + \theta_{23} \cdot female + \eta_{CLSOF})$ $VSOF_i = exp(\theta_5 + \eta_{VSOF})$ $ALAGI_i = exp(\theta_{14})$ $exp(\theta_{12})$ $F_{SOF} = \frac{e_{1}}{1 + exp(\theta_{12})}$

 $KA500_i = exp(\theta_2 + \eta_{KA500})$ $CL500_i = exp(\theta_6 + \theta_{19} \cdot log(\frac{CLCR}{110}) + \eta_{CL500})$

 $V500_i = exp(\theta_7 + \eta_{V500})$ $F_{500} = \frac{exp(\theta_{12} + \theta_{13})}{1 + exp(\theta_{12} + \theta_{13})} - F_{SOF}$

 $KA007_i = exp(\theta_3 + \theta_{16} \cdot fasted + \theta_{22} \cdot CMMDN + \eta_{KA007})$ $CL007_i = exp(\theta_8 + \theta_{17} \cdot log(\frac{CLCR}{110}) + \theta_{18} \cdot female + \eta_{CL007}$

 $V007_i = exp(\theta_9 + \theta_{21} \cdot female + \eta_{V007})$ $Q007_i = exp(\theta_{10})$ $VP007_i = exp(\theta_{11})$

 $ALAG3_i = exp(\theta_{15})$

Correlation

of η's

 $F_{007} = 1 - F_{SOF} - F_{500}$

- Estimated relative % of doses absorbed from the gut on a molar basis: 13.2% (SOF), 23.6% (GS-566500), and 63.2% (GS-331007)
- Low relative fraction absorbed as SOF is consistent with the 4-fold increase in SOF exposure observed in the presence of the potent P-glycoprotein inhibitor cyclosporine
- All volume, CL, and absorption rate parameters were estimated accurately (precision <10%)

Impact of Creatinine Clearance on Exposures of SOF and Metabolites

- Increased CLCR was strongly correlated with decreased exposures for GS-566500 and GS-331007, and less so for SOF
- These findings are consistent with those of the dedicated renal impairment study and the individual GS-331007 population PK analysis included in the SOF and SOF/ ledipasvir New Drug Application/Marketing Authorization Application (NDA/MAA) submissions

Impact of Food on Exposures of SOF and **Metabolites**

Modest effect of food on AUC: higher for SOF (10.8%) and

Sofosbuvir (SOF)

- Potent, once-daily, orally administered, nucleotide analog prodrug, hepatitis C virus (HCV)-specific nucleotide NS5B polymerase inhibitor (chain terminator)
- Antiviral activity and clinical efficacy in HCV genotypes 1–6
- High genetic barrier to resistance and high sustained virologic response rates
- Approved in USA, EU, and other regions for the treatment of chronic HCV as a component of an antiviral treatment regimen
- Provides an option for treatment-experienced patients who previously had no recommended or approved treatment options
- Shows promise for patients awaiting liver transplantation and those with HCV/HIV coinfection
- Since the launch of SOF in December 2013, >310,000 patients (including ≥50,000 in lower-income countries) have received an HCV medication containing SOF

Sofosbuvir Intracellular Activation

CatA, cathepsin A; CES1, carboxylesterase 1; HINT1, histidine triad nucleotide binding protein; NDPK, nucleoside diphosphate kinase; UMP-CMPK, uridine monophosphate-citidine monophosphate kinase. Adapted from Murakami E, et al.

- SOF is activated by sequential metabolic pathways including:
- Low-affinity and high-capacity hydrolases (CES1, CatA, and HINT1)
- Nucleotide phosphorylation (UMP-CMPK and NDPK)
- Only SOF can enter hepatocytes and be converted to active triphosphate (GS-461203)
- SOF can also undergo extrahepatic metabolism to form GS-331007 (predominant circulating metabolite), principally eliminated in urine
- GS-331007 accounts for >90% of systemic drug exposure and is the primary analyte of interest in clinical trials

Objectives

 To develop a mechanistic integrated population pharmacokinetic (PK) model for SOF, GS-566500, and GS-331007, and evaluate the impact of covariates on their PK

Methods

- Data
- Pooled from 8 studies conducted in HCV-infected patients (N=1288)
- Log-transformed data used in the analysis
- Covariates included in the analysis
- Age, gender, race, body weight, ethnicity, creatinine clearance (CLCR) or estimated glomerular filtration rate, cirrhosis status, interleukin-28B status, ribavirin (RBV) use, food, and concomitant medications
- Modeling software and settings
- NONMEM[®] 7.3, FO (ICON Development Solutions, Hanover, Maryland, USA)
- TIBCO Spotfire S+ 8.2 (TIBCO Software, Palo Alto, California, USA)

Model Development

Dataset checking and cleaning Base model building **Covariate exploratory analysis** Covariate model building (forward selection, backward deletion) Model validation (internal) Post-hoc analysis and simulations Base model established using complete dataset Covariate screening - Log-linear regression or analysis of variance

Model Predicted vs Observed Concentration-Time Plots*

*Observed concentrations (black) and individual fits (blue) were in good agreement.

Diagnostic Plots

Random Effects Were Normally Distributed and Centered to 0

Final Model Parameters

	PK Parameters and Baseline Covariates		Baseline Covariate Value	Estimate	Change From Typical, %	Interindividual Variability
OF	Typical CLSOF (male), L/h			78.26	_	66.9
	Female			64.98	-17.0	—
	Typical VSOF, L			17.29	—	239.2
	Typical KASOF (without regard to food), h ⁻¹			0.622	—	72.9
	Fasted			0.925	48.7	—
	Typical lag time, h			0.186	—	—
	F1, %			13.24	—	—
S-566500	Typical CL500 (CLCR 110 mL/min) (L/h)			81.45	—	32.2
	CLCR, mL/min	5 th percentile	68.5	64.25	-21.1	—
		95 th percentile	172.8	102.1	25.4	—
	Typical V500, L			101.5	—	56.6
	Typical KA500, h ⁻¹			0.228		17.9
	F2 (%)			23.58	_	—
S-331007	Typical CL007 (male; CLCR 110 mL/min), L/h			27.66	—	27.7
	CLCR (mL/min)	5 th percentile	68.5	22.46	-18.8	—
		95 th percentile	172.8	33.75	22.0	—
	Female			22.97	-17.0	—
	Typical V007 (without regard to food), L			56.26	—	43.6
	Fasted			24.44	-56.6	—
	Typical KA007 (without regard to food), h ⁻¹			0.034	—	84.0
	Fasted			0.077	123.9	—
	Methadone use			0.016	-53.2	—
	Typical Q007			7.029	—	—
	Typical VP007			308.0	_	—
	Typical lag time, h			0.239	—	_
	F3, %			63.18	—	—
	Residual variability as coefficient of variation, %			56.5		

GS-566500 (26.6%), and lower for GS-331007 (-17.6%)

- Effect of food was confounded by food requirement for coadministration of RBV ± pegylated interferon
- The decrease in GS-331007 AUC for a dosing interval (AUC_{T}) is comparable to the impact of RBV coadministration of GS-331007 on AUC, observed in the SOF/ledipasvir New Drug Application/Marketing Authorization Application individual and integrated models

Impact of Sex and Methadone Use on **Exposures of SOF and Metabolites**

- Impact of methadone use on SOF and SOF metabolite exposures was not considered clinically meaningful
- Modest trend for females to have higher AUCs than males: comparable to that observed in the individual GS-331007 population PK analysis, which was not considered clinically meaningful

Conclusions

- SOF, GS-566500, and GS-331007 PK were adequately described by an integrated mechanistic PK model
- The covariates tested did not have a clinically meaningful impact on SOF and its metabolites exposures
- Relative to the individual model, this integrated model provided further insight on the conversion of SOF to its metabolites
- Following PK/PD analyses based on exposures derived from the integrated population-PK model corroborate the previous findings based on exposures derived from the individual population-PK models and substantiate the use of GS-331007 as a valid exposure marker for E-R analysis in comparison to SOF and GS-566500

- Significant clinical effect: relative effect size outside of 90-110% of nominal value
- Covariate model building: forward addition (p < 0.001) followed by backward deletion (p < 0.001) based on likelihood ratio test

Model evaluation

- Statistical criteria
- Successful covariance step
- Sensitivity analysis
- Stability of minimization – Goodness-of-fit diagnostics

Reference

1. Murakami E, et al. J Biol Chem 2010;285:34337-47.

Acknowledgment

This study was funded by Gilead Sciences, Inc.

Disclosures

F. Jin, B. Kirby, B. Kearney, and A. Mathias: Gilead (employment, equity ownership); Y. Gao: Quantitative Solutions (Consultant to Gilead)

Presented at PAGE 2015, June 2–5, 2015, Hersonissos, Crete, Greece

©2015 Gilead Sciences, Inc. All rights reserved.