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BACKGROUND. Integrating biomarker dynamics to describe the effect of antitumoral drugs provides a deeper insight in the mechanistic aspects of tumor 
progression [1, 2]. When the dynamics of a selective biomarker causally and quantitatively related to the inhibition of an associated tumor is considered 
[3], it is worth asking what structures should have a biomarker-to-tumor model and a drug-to-tumor one, in order to produce consistent predictions. In 
this work we resort to steady-state conditions to check the consistency between some PK/PD models published in the literature [4].  
 

Xenograft experiments: assessing consistency 
between a drug-driven and a biomarker-driven 

tumor growth inhibition model  
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RESULTS. Steady-state behaviors described by the characteristic curves of model III and the cascade of model I and model IV differ especially for higher 
concentrations (Fig.1). In particular, the cascade of model I and model IV predicted higher tumor volumes than model III. The novel biomarker-to-tumor 
model was able to recover consistency between these models: indeed, tumor growth modulation induced by biomarker inhibition is compatible with that 
induced by drug-concentration. The new model eases the comparison and understanding of the relationships between parameters of drug-to-biomarker 
and biomarker-to-tumor submodels. This paves the way to more precise predictions of tumor growth inhibition resulting from different protocols, but 
also from administration of different drugs, provided that they act on the same causal pathway. In order to investigate the differences between models 
predictions,  the tumor growth profiles were simulated with two experiments: Example 1 (reproduction of study 3 in [4], see Fig.2) and Example 2 (1 daily 
dose for 150 days, in order to reach steady-state, see Fig.3) referring to low and high levels of concentrations, respectively.  
 

REFERENCES.  
[1] Atkinsons A, Colburn W, De Gruttola V. et al., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. biomarker definition working group,” Clin. Pharmacol. Ther, (2001), 69: 89–95.    
[2] Williams P. J.  and Ette E., Biomarkers in drug development and pharmacometric Modelling,  Pharmacometrics: The Science of Quantitative Pharmacology  (2007) :457-471. 
[3] Danhof M., Alvan G., Dahl S. G. et al., Mechanism-based pharmacokinetic–pharmacodynamic modeling-a new classification of biomarkers, Pharmaceutical research,(2005), 22(9): 1432–1437. 
[4] Yamazaki S., Nguyen L., Vekich S., et. al. Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available heat shock protein 90 inhibitor in a human tumor xenograft mouse model,  
Journal of Pharmacology and Experimental Therapeutics, (2011), 38(3) :964-973. 
[5] M. L. Sardu, A. Russu, I. Poggesi, and De Nicolao G., Tumour growth inhibition in preclinical animal studies: Steady-state analysis of biomarker-driven models, (2013) PAGE 22, Abstr 2880 [www.page- meeting.org/?abstract=2880]. 
[6] M. L. Sardu, I. Poggesi, and G. De Nicolao, Steady-state equivalence of drug-driven and biomarker-driven models in tumor growth experiments, ( 2014), PAGE 23, (2014) Abstr 3186 [www.page-meeting.org/?abstract=3186] 

CONCLUSIONS With reference to xenograft experiments, we analysed the steady-state consistency between a drug-to-tumor model and a biomarker-to-
tumor one taken from [4]. Since a discernible discrepancy was highlighted, we proposed a novel biomarker-to-tumor model that ensures steady-state 
consistency. The  proposed model was validated on both steady-state characteristic curves and simulated PK/PD experiments. 
This work was supported by the DDMoRe project (www.ddmore.eu). 
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METHODS. All PK/PD data used in this work 
were simulated according to models and 
parameters reported in [4], using NONMEM 
version 7.2. We focused the analysis on three 
models: i) drug-to-biomarker (effect 
compartment model, model I, see scheme on 
the right), ii) drug-to-tumor model driven by 
the concentration in the effect compartment 
(model III, see scheme on the right),  iii) 
tumor growth inhibition model driven from 
the effect of AKT biomarker (model IV, see 
scheme on the right). To assess whether  
model III and the cascade of model I with 
model IV describe consistent behaviors, a 
steady-state analysis was performed. In 
analogy with the method proposed in [5, 6], 
the so-called characteristic curves were 
computed. Moreover, resorting to the reverse 
engineering approach, a new model 
structurally matched with the reference drug-
to-tumor one (model III) was proposed.  
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Fig.2 Reproduction of Study 3 reported in [4], 
simulated  with model III (drug-driven Y. model), 
the cascaded  of model I with model IV (cascaded 
Y. model), and the new matched biomarker-to-
tumor model (cascaded matched model). 

Fig.3 Simulated new experiment at higher doses 
corresponding to the concentration in the 
discrepancy characteristic curves ranges. 
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Fig.1 Overlay plot of the characteristic curves 
of the three models. 
 
Findings: at high steady-state concentration 
the reference drug-to-tumor model and the 
cascade drug-to-biomarker-to-tumor model 
behave differently. 
Solutions: introduce new matched drug-to-
biomarker-to-tumor model. 

Findings: In Example 1, all models yields quite 
consistent predictions (low levels of drug 
concentration). 

Findings:  In Example 2, the Yamazaki-cascaded 
model behaves differently from the reference 
drug-to-tumor model which is in fact consistent 
with the new “matched” (i.e. reverse-engineered 
to comply with the steady state consistency 
requirement) cascaded model. The discrepancy is 
more evident when the drug-to-biomarker model 
is working  near to saturation conditions (C> EC50). 

model III 

model I model IV 

model I New model  
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