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Background
To increase the efficiency of trials in drug 
development, optimal experimental design has been 
used to successfully optimize dose allocation and 
sampling schedules [1,2]. Adaptive optimal design 
has recently been proposed as a method to improve 
the assessment of receptor occupancy time-courses 
in PET experiments [3]. In this work we have further 
developed this concept to include the optimisation of 
dose and also improve the adaptation/optimization 
algorithm. In addition, a kon-koff model using the 
binding potential (BP) estimates from PET studies [4] 
has been applied to account for baseline inter-subject 
variability in these experiments.

Objective 
To investigate advantages of adaptive optimal 
designs vs. traditional designs with fixed or educated 
selection of PET scan allocations, when optimizing 
over both sampling schedule and dose.

Methods 

Simulation Study
Adaptive optimization was performed on the PK-BP 
model with the following parameters: kon=0.088 hrs-1

and koff=0.221 hrs-1, BP0=3, inter-subject 
variability=30%, proportional error model.

A total of 12 subjects was considered with 5 possible 
doses (1.5, 3, 4, 6 and 8mg) and designs with 3, 4, 
and 6 adaptive steps were investigated. At each 
adaptive step, parameter estimates from the previous 
cohorts were determined and used to determine 
designs for the next cohort. The BP time-courses 
from these designs (empirical dummy using samples 
at Tmax and trough, educated – samples selected 
from an independent expert - and optimal) were then 
simulated under the true model. One hundred studies 
per each design were simulated to test the 
performance of the adaptive/optimal algorithm.

Figure 1. Adaptive-optimal design framework.  Initial model, dose 
and scanning times will be selected according prior information. At 
each adaptive step, parameter estimates from the previous cohorts 
were determined and used to determine designs for the next cohort. 

Results 

Discussion 
These results indicate that adaptive optimal design of 
PET occupancy studies provides more accurate 
information on the PK-occupancy relationship. In this 
work, doses were initially selected at high, medium 
and low occupancy levels based on previous 
knowledge of the system. Consequently, 
optimization of dose was not found to influence the 
results. In experiments where initial dose selection is 
misleading it is expected that dose optimization will 
have a greater impact.

A general representation of PK-occupancy time-
course model is described in Figure 2. However, in 
PET studies where only few PET scans per subjects 
can be acquired, this model can not be applied and 
a simplified version needs to be considered.   In our 
study, a kon-koff model using the binding potential 
data derived from PET study was considered. 
Assuming RO derived from the binding potential 
measurement as follow:
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Adaptation/optimization 
algorithm
In the proposed adaptive algorithm, once the model 
has been selected according to preclinical data or 
other criteria, an initial group will receive a selected 
dose and PET scan will be acquired at a pre-
specified time-points. This initial information will be 
then used as a prior to selected doses and PET scan 
times in the subsequent groups (see Figure 1). 

Parameters estimates were performed in NONMEM 
VI. Optimization was performed on scanning times 
only and scanning times and doses using a D-
optimality criterion as implemented in the PopED
software [2,5]. Information about previous cohorts 
were included in the optimal design program as a 
prior to the Fisher information matrix. 
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Design Performance Dummy Educated Optimal (time) 
  Kon Koff Kon Koff Kon Koff 

Bias SME 0.87 1.00 0.13 0.12 -0.0095 -0.029 
Precision (CV) 256 282 38.3 43.7 18.5 20.5 3 groups 

 4 subj x group Accuracy (RMSE) 0.43 1.27 0.040 0.11 0.016 0.044 
Bias (SME) 0.83 0.93 0.096 0.076 -0.0010 -0.012 
Precision (CV) 300 319 43.4 48.7 19.9 23.8 4 groups  

3 subj x group Accuracy (RMSE) 0.49 1.37 0.043 0.12 0.017 0.052 
Bias (SME) 0.87 1.00 0.13 0.12 0.013 0.0022 
Precision (CV) 256 282 38.3 43.7 19.6 22.7 6 groups  

2 subj x group Accuracy (RMSE) 0.43 1.27 0.040 0.11 0.017 0.050 
 

Design Performance Optimal 
 (time) 

Optimal 
(time + dose) 

  Kon Koff Kon Koff 
Bias SME -0.0095 -0.029 0.0086 -0.0088 
Precision (CV) 18.5 20.5 19.5 19.6 3 groups 

 4 subj x group Accuracy (RMSE) 0.016 0.044 0.017 0.043 
Bias (SME) -0.0010 -0.012 -0.0077 -0.021 
Precision (CV) 19.9 23.8 20.1 21.4 4 groups  

3 subj x group Accuracy (RMSE) 0.017 0.052 0.018 0.046 
Bias (SME) 0.013 0.0022 0.011 0.0004 
Precision (CV) 19.6 22.7 18.2 20.0 6 groups  

2 subj x group Accuracy (RMSE) 0.017 0.050 0.016 0.044 
 

A clear improvement in terms of bias (SME), 
precision (CV) and accuracy (RMSE) of the 
population estimates (Kon and koff) was found when 
comparing dummy vs. educated vs. optimal. 
Unbiased mean estimates were found for the optimal 
designs; a great improvement in accuracy was found 
when comparing optimal vs. dummy designs (25-30 
fold) and still a significant improvement was found 
when comparing optimal vs. educated designs (2-3 
fold). 
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Receptor-Time Course Model 
using Binding Potential

where BP0 is the baseline binding potential and BP
that after dosing. The equation for the receptor-time 
course model can be described as:

Figure 2. Schematic representations of a PK-receptor binding model
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Dose and Sampling Time Optimization for a Typical Simulation 
(Design with 4 subjects x groups and 3 groups)

Figure 4. Comparison of performances (Bias and relative error) 
between adaptive-optimal vs non optimal approaches on different 
designs. 

Figure 5. Distribution of optimal sampling time for the design with 3 
subjects x group and 4 group (100 simulated studies).

Figure 3. Binding potential time-course at three different dose levels. 
Red circles represents the optimal PET scan allocation per each 
group. 

No clear advantages were found when optimizing 
both time and dose. The number of adaptive steps 
was less influential on design performance than the 
method of designing the next step. No improvement 
was obtained for inter-subject variability estimates 
when comparing optimal vs. non optimal designs. 

A binding potential time-course for a typical simulated 
study with optimal PET scan allocation is illustrated 
below. 


