INTRODUCTION

The aim of this work was to model in-vivo pharmacokinetic (PK) data using a three-compartment model with first-order elimination. The parameters of the compartmental model were estimated by non-linear mixed models in R and MONOLIX. The fit of the resulting models was compared to the individual intravenous (IV) infusion data.

METHODS

- To examine the drug’s PK, the mean and individual plasma concentrations of the IV infusion were compared to the individual intravenous (IV) infusion data.
- PK processes can be simplified and visualized as compartmental models [3]:

![Diagram of a three-compartment model](image)

- Mathematically, pharmacokinetic models are characterized by non-linear models,
 \[y_i = f(t_i; \phi_i, \gamma_i) + e_i, \quad e_i \sim \mathcal{N}(0, \sigma_i) \]
 \(i = 1, \ldots, M, \quad j = 1, \ldots, n \)
- The function \(f \) can be defined as the solution to a system of ordinary differential equations (ODEs):
 \[
 \begin{align*}
 \frac{dA_1(t)}{dt} &= K_{21}A_2(t) + K_{31}A_3(t) - K_{12}A_1(t) - K_{13}A_1(t) \\
 \frac{dA_2(t)}{dt} &= K_{12}A_1(t) + K_{13}A_1(t) - K_{21}A_2(t) - K_{23}A_2(t) \\
 \frac{dA_3(t)}{dt} &= K_{21}A_2(t) + K_{23}A_3(t) - K_{31}A_3(t) - K_{32}A_3(t)
 \end{align*}
 \]
- To predict the drug concentration \(C \) in the blood for any time \(t \), the amount of drug \((A) \) in the blood has to be divided by the apparent volume of distribution \((V) \) of the drug:
 \[C(t) = A(t)/V \]
- Data not only from one subject, but from a whole sample of 18 subjects
- Parameters are different for each subject \(i \), thus, are the sums of population (fixed) effects and individual (random) effects [2]:
 \[V_j = \beta_V + b_{Vj}, \quad b_{Vj} \sim \mathcal{N}(0, \sigma^2_V) \]

RESULTS

For reasons of convergence and lower AIC, only the random effect for \(V \) has been included. The result of the fixed effects model served as initial values for the mixed effects models.

![Graph showing concentration vs time](image)

DISCUSSION

As can be seen in the left graph, the estimated PK parameters - by R as well as by MONOLIX - lie very close together, fit the individual concentration curves well and make biological sense. The random effects models are preferred over the NLS-estimation as they incorporate also the individual effects. The parameters estimated in R fit the observed data better based on visual inspection of the individual profiles.

REFERENCES

NLMIXR CODE

```r
#1) NLMIXR_CMPT (closed form solution)
specs.1 <- list(fixed = lV+lKE+lK12+lK21+lK13+lK31 ~ 1, random = lV~1|ID, start = c(...))
Mixr.1 <- nls_cmpt(data, par_model=specs.1, ncm=3, oral=F, infusion=TRUE, parameterization=2, control = ...)

#2) NLMIXR_ODE (ODE system)
ode <- "\[d/dt(centr) = K21*periph+K31*periph2-K12*centr-K13*centr-KE*centr; d/dt(periph) = K12*periph+K13*centr; d/dt(periph2) = K31*periph2+K13*centr; \]
mpar <- function(IV, KE, K12, K21, K13, K31) {
  ( V = expr(IV), KE = expr(KE), K12 = expr(K12), K21 = expr(K21), K13 = expr(K13));
  specs.ODE1 <- list(fixed = lV+lKE+lK12+lK21+lK13+lK31 ~ 1, random = lV~1|ID, start = c(...))
  Mixr.ODE.1 <- nlmixr(data, model=ode, par_model=specs.D, par_trans=mpar, responses="centr", control = ...)
}
Mixr.ODE.1 <- nlmixr(data, model=ode, par_model=specs.D, par_trans=mpar, responses="centr", control = ...)
```

DISCUSSION

As can be seen in the left graph, the estimated PK parameters - by R as well as by MONOLIX - lie very close together, fit the individual concentration curves well and make biologically sense. The random effects models are preferred over the NLS-estimation as they incorporate also the individual effects. The parameters estimated in R fit the observed data better based on visual inspection of the individual profiles.