efp*a

Good Practices in Model Informed Drug Discovery & Development (MID3): Practice, Application, Documentation and Reporting

Scott Marshall on behalf of the EFPIA MID3 Workgroup

PAGE 2014: ALICANTE

Outline

*Progress against Actions from EFPIA/EMA M&S workshop (2011)

*****Good Practice Overview

*Highlights of Part 1: Practice & Application

*Highlights of Part 2 : Documentation & Reporting

*Next Steps

EFPIA/EMA M&S Workshop (Dec 2011): Objectives and Outputs

Workshop's objectives:

- Discuss the role and scope of M&S in drug-development from both the developer's and the regulator's perspectives.
- An opportunity for industry, academia and regulators:
 - To learn from each other
 - Create greater awareness
 - Share experiences
 - Identify gaps and future opportunities

EDITORIAL

Regulatory Modeling and Simulation Moves Into the Next Gear in Europe

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e32; doi:10.1038/psp.2013.8; advance online publication 27 February 2013

PERSPECTIVE

The Role of Modeling and Simulation in Development and Registration of Medicinal Products: Output From the **EFPIA/EMA Modeling and Simulation Workshop**

E Manolis¹, S Rohou², R Hemmings^{1,3}, T Salmonson^{1,4}, M Karlsson⁵ and PA Milligan⁶

Modeling and Simulation at the Interface of Nonclinical and Early Clinical Drug Development BOS

SAG Visser^{1,2}, E Manolis³, M Danhof⁴ and T Kerbusch⁶

PERSPECTIVE

Modeling and Simulation in Clinical Pharmacology and Dose Finding BOS 2

A Staab1, E Rook23, M Maliepaard23, L Aarons4 and C Benson5

PERSPECTIVE

Modeling and Simulation as a Tool to Bridge Efficacy and Safety Data in Special Populations

L Harnisch¹, T Shepard^{2,3}, G Pons^{3,4} and O Della Pasqua⁵

PERSPECTIVE

Modeling and Simulation to Optimize the Design and Analysis of Confirmatory Trials, Characterize Risk-Benefit, and Support Label Claims

SF Marshall¹, R Hemmings^{2,3}, F Josephson^{2,4}, MO Karlsson⁵, M Posch^{2,7} and J-L Steimer⁴

EFPIA/EMA M&S Workshop (Dec 2011): Progress against Actions

Opportunities	Challenges	Action	
 Increase efficiency of R&D through data Integration & design optimisation 	Heterogeneity & inconsistency of practice across industry. Need for standardisation of	Agree on common Good Practices : Standardisation and Reporting	
•Robust informed R&D decision making & regulatory assessment	analysis & reporting		
•Support extrapolation across populations	Variable readiness of regulatory system to evaluate approaches	Integrate and expand competence in EU regulatory framework	
•Informed Risk-Benefit assessment & labelling	Communication gap between modeller & non-modeller	Workshops & utilisation of current regulatory pathways	
•Integration of omic data			
	Mis-perception that dose response is only company risk	Debate update to regulatory guidance	
	Data sharing	Strengthen data sharing initiatives	

EFPIA MID3 Workgroup Membership

Name	Affiliation			
Name	Allillation			
Rolf Burghaus	Bayer			
Valerie Cosson	F. Hoffmann-La Roche			
S. Y. Amy Cheung	AstraZeneca			
Marylore Chenel	Servier			
Oscar Della Pasqua	GlaxoSmithKline			
Nicolas Frey	F. Hoffmann-La Roche			
Bengt Hamren	AstraZeneca			
Lutz Harnisch	Pfizer			
Frederic Ivanow	Johnson & Johnson			
Thomas Kerbusch	Merck/MSD			
Joerg Lippert	Bayer			
Scott Marshall	Pfizer			
Peter Milligan	Pfizer			
Solange Rohou	AstraZeneca			
Alexander Staab	Boehringer Ingelheim Pharma GmbH & Co. KG			
Jean Louis Steimer	Novartis			
Christoffer Tornoe	Novo Nordisk			
Sandra Visser	Merck/MSD			

Acknowledgements:

Name	Affiliation
Efthymios Manolis	EMA
Terry Shepard	MHRA

Members of EMA MSWG are involved in the review of the document and are aligned with the covered principles.

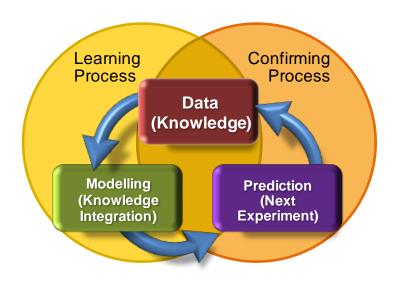
EFPIA Model Informed Drug Discovery & Development (MID3) Document

Introduction & Definitions

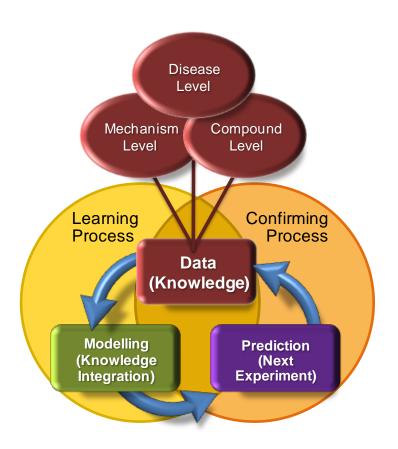
Part 1

- Practice & Application
 - * Rationale
 - * Strategic Planning
 - * MID3 Approaches
 - * MID3 Applications

Part 2

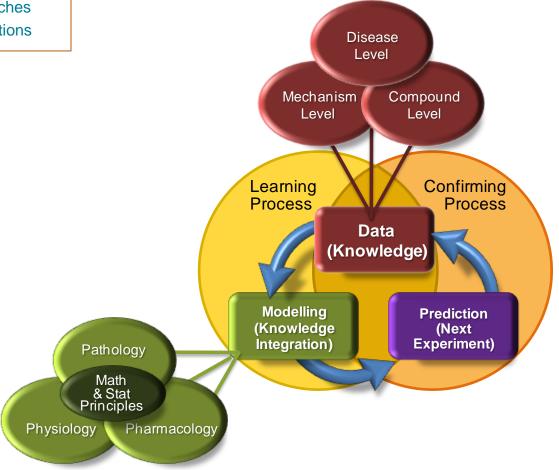

- * Document & Reporting
 - * Current Limitations
 - * Good Doc Practice
 - * Assumptions
 - * Components & Considerations:
 - * Analysis Plan
 - * Simulations Plan
 - * Report

Glossary & References


Part 1:

Practice & Application
Rationale
Strategic Planning
MID3 Approaches

Part 1:
Practice & Application
Rationale
Strategic Planning
MID3 Approaches

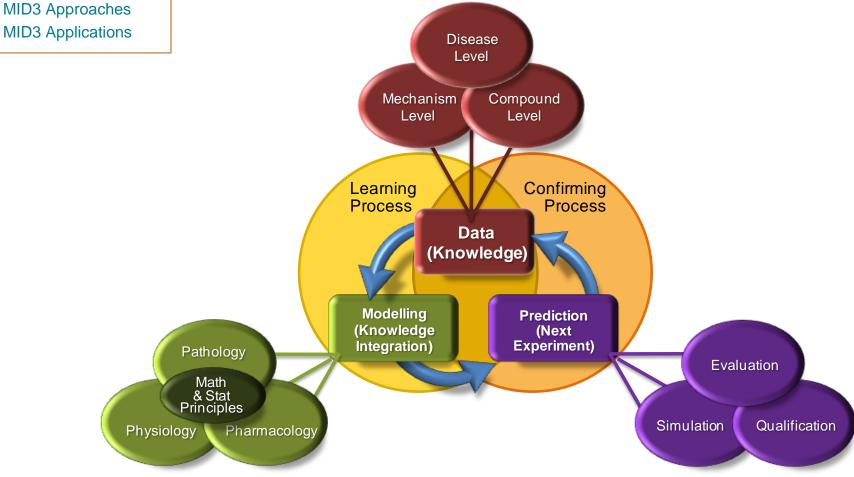

Part 1:

Practice & Application

Rationale

Strategic Planning

MID3 Approaches



Part 1:

Practice & Application Rationale

Strategic Planning

MID3: Strategic Planning

Part 1:

Practice & Application Rationale

Strategic Planning

MID3 Applications

- ★ MID3 plan proposed and endorsed along side R&D plans:
 - * Link to data generation
 - * Refreshed at key R&D milestones
 - * Tracked with other R&D components

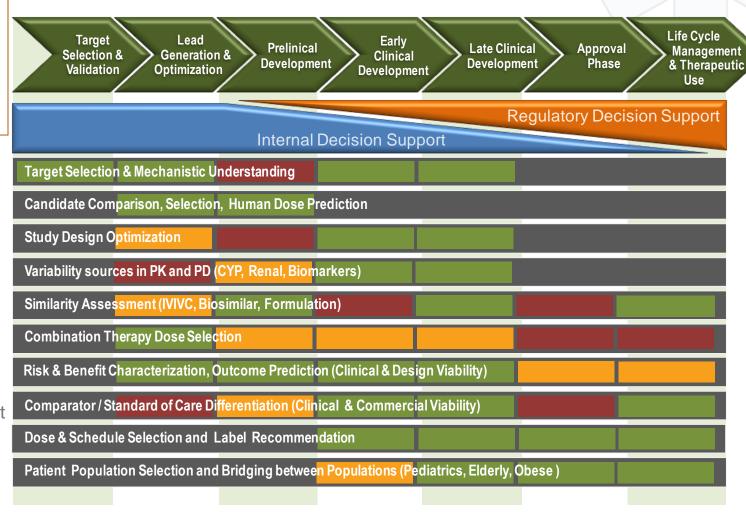
Good Practice MID3 Grid

		Activity Level					Ana	lysis of Return on Investment
		Disease	Mechanism	Compound	b		*	What information will be generated?
	PK	Generic Questions?						generated :
	Safety						*	How will the activity inform the decision(s)?
ne	Efficacy						*	What would be the impact of not conducting this work?
Theme	Benefit /Risk						*	What are the interdependencies in MID3 plan?
	Commercial Viability	Propo	ivities			*	What are the likely key assumptions & limitations?	
	Clinical Viability							
	Study Design					Α	MID	R PAGE 2014 ALICANTE 44

MID3: Comparison of Modelling Approaches (Extract)

Part 1: Practice & Application Rationale Strategic Planning MID3 Approaches MID3 Applications

- Recognised as Subjective
- Current EFPIA
 Viewpoint to drive
 discussion
- Identify gaps & Opportunities


			Modelling Approach						
ĺ			Empirical Dose Time Analysis	Empirical PK/PD	Model based Meta- analysis	(Semi) Mechanistic PK/PD (PBPK)	Systems Pharma- cology modeling		
	Description & Nature of Model	Assumptions Stat Rigour Biologically Principles Ability to Extrapolate							
	Experimental Design	Use Totality of indiv .data Use of Lit data	-	+++	++++	+++	++++		
		Bayesian Priors	++	+++	-	++	-		

- Also Covers:
- Model Building, Evaluation & Qualification
- Role in Decision Making EFPIA MID3 PAGE 2014 ALICANTE

MID3: Applications & Request for More Case Studies? Please send to: Sandra. Visser @ merck.com

Part 1: **Practice & Application** Rationale Strategic Planning MID3 Approaches **MID3 Applications** 90 case studies Arranged by Application

- Type R&D stages
- Summarised by
- **Key Themes**
- **Activity Levels**
- Modelling(es) Approach
- R&D Question(s)
- Internal Impact

MID3 Documentation: Good Practice

Part 2:

Document & Reporting

Current Limitations Good Doc Practice

Assumptions

Components

& Considerations:

Analysis Plan

Simulations Plan

Report

Good Practice

Clarity on the key questions & Objectives

Transparency of Assumptions & their Evaluation

Simulations to Integrate the necessary Levels of Uncertainty

Reproducible Research (Utilise QA/QC Risk Based Guideline)

Sufficient Information to judge the model

Documentation orientated to satisfy all end-users "Fit for Purpose"

Use Adequate Graphical and/or Tabulated display of Key Data features, Model and Simulation Results.

Good practice proposal on Inclusion of MID3 Analyses and Conclusions in CTD

- QA/QC Risk Based Guideline:
 - QA : Audit Trail
 - Scientific Review
 - Risk assessment to determine the extent of the QC required

MID3: Assumptions

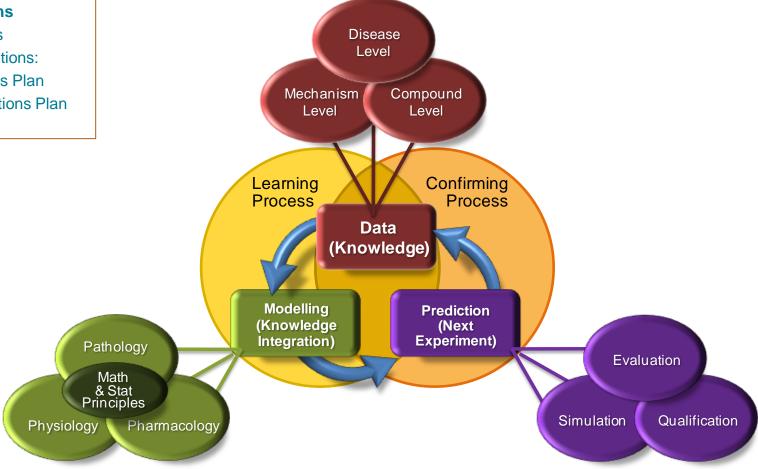
Part 2:

Document & Reporting

Current Limitations

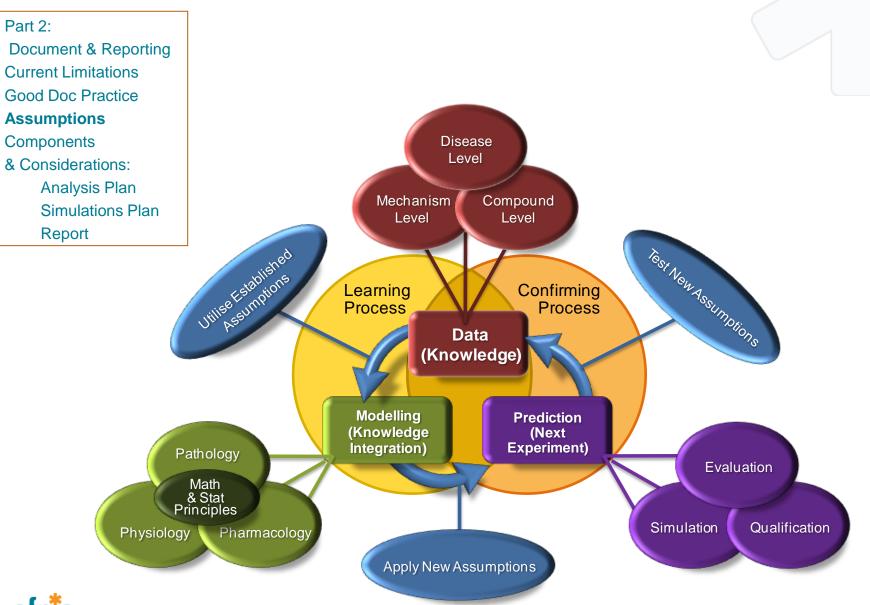
Good Doc Practice

Assumptions


Components

& Considerations:

Analysis Plan


Simulations Plan

Report

MID3: Assumptions

MID3: Assumptions

Part 2:

Document & Reporting

Current Limitations

Good Doc Practice

Assumptions

Components

& Considerations:

Analysis Plan

Simulations Plan

Report

Assumptions	Justification	New/	Testable/	Test/Approach	Evaluation
		Established	Not-Testable	to assess	
				impact	

Pharmacological assumptions

Physiological assumptions

Disease assumptions

Data assumptions

Mathematical and statistical assumptions

Components of Good Practice Plans: "Fit for Purpose"

Part 2:

Document & Reporting

Current Limitations

Good Doc Practice

Assumptions

Components

& Considerations:

Analysis Plan

Simulations Plan

Report

- List of suggested Components
- Guiding principles
- Collation of References
- "Fit for Purpose"Guidance

Analysis Plan

- Introduction
- Objectives
- Data Plan
- Data Exploration
- * Methods
 - * Model Building
 - Selection & Evaluation
 - * Qualification
- * Assumptions
- * Results
 - Key Displays to support Claims

Simulation Plan

- * Introduction
- Objectives
- * Additional Data
- Methods
 - * Identify models
 - * Limitations
 - * Qualification
- * Assumptions
- * Results
 - Key Displays to support Claims

Report

- Synopsis
- Introduction
- Objectives
- * Data
- Methods

- * Assumptions
- * Result
 - Key Displays to support Claims
- Applications/Simulations
- * Discussion
- * Conclusions
- * Appendix

Next Steps

- * Develop full text document
- * Complete application examples (Help Please!)
- * Document finalisation and publication: Target PSP 3Q 2014
- * Share & engage with ISOP Standards & Best **Practice Committee**
- * Continue dialogue with MSWG colleagues including support to development of future Regulatory Guidelines

