

UPPSALA UNIVERSITET Sample size for detection of drug effect using item level and total score models for Unified Parkinson's Disease Rating Scale data Siv Jönsson¹, Shuying Yang², Chao Chen², Elodie L. Plan¹, Mats O. Karlsson¹ ¹Department of Pharmaceutical Biosciences, Uppsala University, Sweden; ²GlaxoSmithKline, London, UK

Contact: siv.jonsson@farmbio.uu.se, www.farmbio.uu.se/research/researchgroups/pharmacometrics

Objective

To estimate the sample size required to reach 80% power for detection of a drug effect using an item response model (IRM) and a total score model (TSM), describing longitudinal 44-item Unified Parkinson's Disease Rating Scale (UPDRS) data in advanced Parkinson's disease (PD) patients.

Methods

Data and Models

- Longitudinal (24 weeks) UPDRS in advanced PD patients [1]
- Comparison of ropinirole to placebo as adjunct therapy to L-dopa

Conclusions and discussion

- ✓ IRM analysis superior over TSM analysis from study size perspective
- ✓ Sample size reduction ~50% for drug effect detection (80% power) using the current data set
- ✓ Confirmed, or even exceeded, previous studies where IRM analysis reported sample size reductions varying from 18% to 49% [6-9]
- ✓ Use of observed i∆OFVs in MCMP beneficial, but estimated sample size expected to be less precise given low number of i∆OFVs [4]

- ✓ Individually titrated doses between 6 and 24 mg/day
- Item-level and total score UPDRS data (Table 1)

Table 1. Number of observations		ITEM	TOTAL	
[number of patients].	Placebo	31,212 [190]	663 [189]	
	Ropinirole	33,951 [201]	727 [200]	

- Previous IRM [2] re-estimated for patients in present population of PD patients (Eqs. 1-3)
 - Response for item j (Yj), function of unobserved disability for subject i (D_i), as a random effect
 - Three unobserved (latent) variables describing Patient reported, Nonsided and Sided responses [3]
 - Extent ($Ext_{ITEM,j}$) and onset ($On_{ITEM,j}$) of symptom relief over time (t) in D_i
 - Exposure independent symptomatic drug effect $[SY_{ITEM,j}]$ in D_i
 - UPDRS total score and D_i related through item characteristic curves
 - o probability for a response (0, 1, k, ... K) for each item
 - item specific parameters a_j (slope/discrimination) and b_j (difficulty/location)

$$D_i(t) = D_{i,t=0} + \left(Ext_{ITEM,j} + SY_{ITEM,j}\right) \cdot \left(1 - e^{-On_{ITEM,j} \cdot t}\right)$$

 $P(Y_{ij} \ge k) = \frac{e^{a_j(D_i - b_{jk})}}{1 + e^{a_j(D_i - b_{jk})}}; P(Y_{ij} = k) = P(Y_{ij} \ge k) - P(Y_{ij} \ge k + 1) \text{ Eqs. 2-3}$

Results

Models

- ✓ The IRM and TSM predicted the total score reasonably well (Figure 1).
- ✓ Statistically significant drug effect (p<0.001) with ∆OFVs of -210 and -37 for IRM and TSM, respectively.
- ✓ Approximate model predicted change in total UPDRS at week 24 in placebo group: -2 [-4; -1] (95% CI) and -4 [-6,-2] for IRM and TSM.
- ✓ Approximate model predicted change in total UPDRS at week 24 in ropinirole group: -9.0 [-11,-8.0] and -9.3 [-12,-7.1] for IRM and TSM.

Figure 1. Visual predictive checks for total UPDRS scores based on IRM (left) and TSM (right), respectively.

- ✓ TSM settled for advanced PD patients with complete item records (Eq. 4)
 - exponential placebo time course (Ext_{TS} and On_{TS})
 - symptomatic drug effect $[SY_{TS}]$

 $TS_i(t) = TS_{i,t=0} + (Ext_{TS} + SY_{TS}) \cdot (1 - e^{-On_{TS} \cdot t})$

Eq. 4

Power calculations

- ✓ Monte-Carlo Mapped Power (MCMP) method [4]
 - 10,000 MC samples stratified by treatment
 - Observed individual difference in OFV (iΔOFV) between full (with drug effect) and reduced (without drug effect) models, for IRM and TSM
 - p=0.05 (1 df, ΔOFV 3.84)
- ✓ Support for ∆OFV cut-off used in MCMP
 - Randomisation test [5] for TSM
 - 1000 data sets sampled: placebo, or, placebo and ropinirole data
 - Treatment (placebo:ropinirole, 1:1) randomly assigned for each data set
 - Full and reduced models estimated for each data set
 - Empirical ΔOFV cut-off (p=0.05, 1 df) obtained from ΔOFV distribution

Power calculations

Monte-Carlo Mapped Power (MCMP) method [4]

 At 3.84 cut-off, sample size required for 80% power in detecting a drug effect was 54% lower using IRM compared with TSM.

Figure 2. Power versus total sample size (placebo and ropinirole) for IRM and TSM analysis, respectively.

 The reduction in required sample size tended to be larger when applying a higher cut-off value; sample size reduction of 69% at ΔOFV of 10.8 (Table 2).

Table 2. Estimated total number (placebo	Critic
and ropinirole) of patients to reach 80%	(ΔO
power, analysing with IRT and TSM,	
respectively.	-:
	-6
	-1(

Critical value	Sample	size (N)	Ratio
(ΔΟFV, χ ²)	IRM	TSM	N _{TSM} /N _{IRM}
-3	32	72	2.3
-3.84	38	82	2.2
-6.635	44	124	2.8
-10.828	54	176	3.3

Support for ΔOFV cut-off used in MCMP (randomisation test)

Type I error rates sampling from only placebo or combined placebo and

References

- 1. Pahwa R et al.; EASE-PD Adjunct Study Investigators. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson's disease. Neurology, 2007; 68(14):1108-15
- 2. Jönsson S et al. Placebo and drug response assessment on Unified Parkinson's Disease Rating Scale using longitudinal item response modelling. PAGE 26 (2017) Abstr 7236 [www.page-meeting.org/?abstract=7236]
- 3. Gottipati G et al. Modeling a composite score in Parkinson's Disease using item response theory. AAPS J,. 2017;19(3):837–45
- 4. Vong C et al. Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J, 2012; 14(2):176-86
- 5. Wählby U et al. Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn, 2001;28(3):231-52
- 6. Ueckert S et al.; Alzheimer's Disease Neuroimaging Initiative. Improved utilization of ADAS-cog assessment data through item response theory based pharmacometric modeling. Pharm Res, 2014; 31(8):2152-65
- Kalezic A et al. Sample size calculations in multiple sclerosis using pharmacometrics methodology: comparison of a composite score continuous modeling and item response theory approach. PAGE 23 (2014) Abstr 3262 [www.page-meeting.org/?abstract=3262]
- 8. Schindler E et al. Comparison of item response theory and classical test theory for power/sample size for questionnaire data with various degrees of variability in items' discrimination parameters. PAGE 24 (2015) Abstr 3468 [www.page-meeting.org/?abstract=3468]
- 9. Buatois S et al. Item response theory as an efficient tool to describe a heterogeneous clinical rating scale in de novo idiopathic Parkinson's disease patients. Pharm Res, 2017;34(10):2109-2118

- ropinirole treated patients were similar (Table 3, Figure 3).
- ✓ Sampling from all patients indicated that using a ∆OFV cut-off of 3.84 would be appropriate

Table 3. Actual $\triangle OFV$ when sampling from placebo or from placebo and ropiniriole treated patients (sampling 3 times, n=189).

Placebo treated patients		Placebo + ropinirole treated patients				
Actual ∆OFV at 5th percentile						
-4.98	-4.47	-3.97	-3.32	-3.59	-3.36	
Actual percentile at ΔOFV 3.84 (χ^2 , 1df)						
0.074	0.063	0.051	0.035	0.039	0.039	

Figure 3. Quantiles of ΔOFV , from randomisations test using placebo or placebo+ropinirole treated patients

Disclosure

SJ, MOK and ELP are employed at Uppsala University (UU). SY and CC are employees of GlaxoSmithKline (GSK), London, UK. UU has received funding from GSK.