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• Describes the dynamics of cardiovascular drug action

• Main (physiologically based) features of:
1. Cardiovascular pathophysiology
2. Limited number of hemodynamic variables

• Developed based on assumption of:
1. Hemodynamic relationship
2. Regulation of the Arterial Pressure

(feedback control mechanism)
3. The dynamics of the drug

• Predict qualitative and quantitative changes in mean 
arterial pressure and cardiac output after drug  
administration

• A non-linear overly simplified model but too complex    
for parameter estimation

• Lack of identifiability

Controller Process

Feedback

+

-

U(s) Y(s)

Closed loop feedback control system

Heart model

Francheteau, P., et al., J Pharmacokinet Biopharm. 21:489-414 (1993)

CO HR SV
M AP RAP TPR CO

= ⋅
− = ⋅

Feedback Control Mathematical Model
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PK:
G : Gut
S : Systemic
P : Peripheral

PD:
TPR : Peripheral resistance
MAP: Mean arterial pressure
SV : Stroke volume
CO : Cardiac output
HR : Heart rate
U, U1 , U2: Auxiliary variables

PD non-linear 

U(t)

+

-

-

TPR(t)

U1(t)

U2(t)

MAP(t)

SV(t) HR(t)

CO(t)

+

PK linear

G(t)

Dose
ka

cl / v1

cld /v1

cld / v2

Cp(t) = 1 / v1

1 / v1
S(t)

P(t)

PKPD Model
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( ) 1 1 ( ) ( )eq
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α

τ
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(0) ,CO q=

PD model differential equations: 1

( )( ) S tCp t
v

=

( ) ( ) ( )MAP t RAP SV TPR t HR t= + ⋅ ⋅

( )( ) CO tHR t
SV

=

Emax model:

Initial condition:

Observation of:

(0) 0,Cp =

Unknown parameters:

α,β,τ,τ1,τ2, ac, bc, Emax, EC50, TPReq, HReq,MAPeq

PD Model

U(t)

+

-

-

TPR(t)

U1(t)

U2(t)

MAP(t)

SV(t) HR(t)

CO(t)
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Motivation

•The parameters bc,τandτ1 were difficult to
estimate.

• In the sensitivity analysis, these parameters were
showed to have little influence on the outcomes        
measured.

Suggested unidentifiability of those parameters and model
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SIA (Bellman, Cobelli, DiStefano III and Godfrey)

Structural Identifiability Analysis (SIA)

Aim: Identify whether the internal structure can be 
‘uniquely identified by the experiment’

Prior or Post check for: 
Experimental design
System identification
Parameter estimation 

ModelDose Response
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• A uniquely globally identifiable model
→ a unique set of parameter values can be      

determined by the experiment.

• A locally identifiable model
→ there exists a finite sets of distinct parameter 

values, which produce the same i/p – o/p. 

• An unidentifiable model
→ there exists an infinite sets of parameter  

values, which produce the same observed 
behaviour.

SIA of Parameters and Model
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A nonlinear system, is expressed in the form
below:

[ ]10, , ( , ) , ( , ) andn m qt t x t p y t p p∈ ∈ ∈ ∈ Ω ∈

( , ) ( ( , ), ) ( ) ( ( , ), )x t p f x t p p u t g x t p p= +

( , ) ( ( , ), )y t p h x t p p=

with 
0(0, ) ( )x p x p=

Nonlinear System
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Assuming full controllability and observability of the system.
We seek:

( ) ( )( ), ( , )v        h x p h x pλ =

( ) ( )1 2 3 1 2 3, , , ,x x xλ λ λ λ=

1 1

1

1

n

n n

n

x x

x

x x

λ λ

λ

λ λ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂

= ⎢ ⎥
∂ ⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

from         to         such that: where,x p ,x p

( ) ( )0 0( ) ( )ii        x p x pλ =

( ) ( ) ( )( ), ( , )xiv        g x p g x p
x

λλ ∂
= ⋅

∂

( ) ( ) ( )( ), ( , )xiii        f x p f x p
x

λλ ∂
= ⋅

∂

( ) ( )xi        rank n
x

λ∂
=

∂

Chappell, C., et al., Math. Biosci. 102:41-73 (1990)

STA of Nonlinear systems
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In general, for nonlinear ODEs

( ) ( )( )( ), ( , )xf x p f x p iii
x

λλ ∂
= ⋅

∂

( )x xλ = Λ ⋅

( ) ( ),f x, p f x pΛ ⋅ = Λ ⋅

but if:
1. f is polynomial in x
2.  The observation function is linear

Then, it is sufficient to consider:

So,

Chappell, C., et al., Math. Biosci. 102:41-73 (1990)

STA to nonlinear polynomial systems
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Original model equations ( ƒ )
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Cardiac PK/PD model rewritten to have polynomial   
form and linear observation

( )

( )

( )

1

1 1

2( ) ( )( )

( ) . ( ) ( ) ( ) ( )

1( ) 1 ( )1
1
1 ( ) ( ) 2( ) 1 ( ) ( ) ( )2 max max 50
2

1( ) ( )

S t A tA t
v

MAP t sv TPR t HR t TPR t HR t

HR t HR U HR teq

S t S tTPR t TPR U E A t TPR t E EC A teq v v

U t ac MAP t MAP bc Meq

α
τ

β
τ

τ

− ⋅
=

= ⋅ + ⋅

⎡ ⎤= ⋅ − ⋅ −⎢ ⎥⎣ ⎦

⎡ ⎤
= ⋅ − ⋅ + ⋅ ⋅ − − ⋅ ⋅⎢ ⎥

⎣ ⎦

⎛ ⎞= − + ⋅⎜ ⎟
⎝ ⎠

( ) ( )AP t U t⎡ ⎤−⎢ ⎥⎣ ⎦

1

( ) ( ) . ( )S tobs MAP t sv HR t
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

50
1

0
0
1

(0)

. .

0

eq eq

eq

eq

dose

doseECx v
RAP sv TPR hHR

HR
TPR

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+= ⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

States A and MAP are added to remove a rational polynomial and a nonlinear 
observation respectively. They are based upon the following definitions:

50
1

1( ) ( )A t S tEC
v

=
+ ( ) ( ) ( )MAP t sv TPR t HR t= ⋅ ⋅and

max
1

( )( ) ( )S tE t E A t
v

= ⋅ ⋅
This gives that:

Cardiac Model: polynomial form (ƒ)
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 bc
bc

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Λ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Results

• A total of 593 simultaneous equations generate by the theorem of the  model to solve  
for 12 unknown parameters.

• The process was divided into 11 sessions in the analysis
• The following relations which describe the relation between     are as  follow 
(obtained with assistance of MATHEMATICA):

p p=

• The        matrix obtained is:Λ

50 50

1 1 2 2

, , , , ,

, , , , ,

eq eq max maxMAP MAP E E EC EC

ac bc bc bcac
bc bc bc

α βτ τ τ τ τ τ α β

= = = = =

⋅ ⋅ ⋅
= = = = = =

eq eq eq eqHR HR TPR TPR

( )( ) 1 ( )( ) ( )eq
dU t dMAP tac MAP t MAP bc U t

dt dtτ
⎛ ⎞= − + ⋅ −⎜ ⎟
⎝ ⎠

PD model

PK model

8 8 8 8I× ×Λ ≠

8 ,8 : , , ,bc ac
acbc

α βλ
α β
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If J(p) with rank J(p)=q. Let N={n1, n2,… np-q} 
span the null space of . Consider any function 
φ(p)-> R which satisfied the condition 

Substitution of the results from the structural 
identifiability analysis is then applied to the row-
reduced form of J(p).  Suppose that rank J(p)= 
q<p, then there exist (p-q) redundant parameters 
and a locally identifiable reparameterisation with 
q parameters.

Consider the Taylor series expansion on 
the similarity transformation of the 
defining conditions in state variables: 

0 , 1, ....,in i p qϕ⋅ ∇ = = −
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=
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ˆ ˆ ˆ
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∂ ∂ ∂
∂ ∂ ∂
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∂ ∂ ∂
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∂ ∂ ∂
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
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⎢ ⎥
⎣ ⎦

Step 1:

Chappell, C., et al., Math. Biosci. 102:41-73 (1990)

( )
( )
( )

ˆ , , 0
ˆ , , 0
ˆ , , 0

F x p p

G x p p

H x p p

=

=

=

⇒

Step 2:

Consider the Jacobian matrix of the partial 
derivatives of the Taylor series 
coefficients: 

Step 3:

Step 4:

is a locally identifiable reparameterisation of the 
system

Then φ(p) is a locally identifiable parameter of 
the system and 

( ) ( )1 1, .. . , , . . . ,p qp pϕ ϕ ϕ=

Parameter list Reduction
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The possible solutions obtain from step 4 are as 
follow:

( ) ( ) ( )1 2 3, , acp bc p bc p
bc

ϕ α ϕ β ϕ= ⋅ = ⋅ =

A new model with globally identifiable parameters:

( )
( )

( )
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1

3 9
5

2 10 8 7 8
6 1 1

11 1
4
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= ⋅ + ⋅
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= ⎢ ⎥
⎣ ⎦
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
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7
1

1( ) ,( )A t S t
v

ϕ
=

+
( ) ( ) ( ),MAP t sv TPR t HR t= ⋅ ⋅

where

8
1

( )( ) ( )S tE t A t
v

ϕ= ⋅ ⋅

This gives that:

1 2 3 4 5 1 6 2

7 50 8 max 9 10 11

, , , , , ,

, , , ,

eq eq eqM AP TPR H R

acEC E bc bc
bc

ϕ ϕ ϕ ϕ τ ϕ τ ϕ τ

ϕ ϕ ϕ α ϕ β ϕ

= = = = = =

= = = ⋅ = ⋅ =

( ) ( )1 2 3 4 5 6 7 8 9 10 11, , , , , , , , , ,pϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=

Parameter list reduced Cardiac Model
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Model Comparison

• Clinical data set analysed in NONMEM using both models

• Some fixed effects were held constant due to old model 
unidentifiability (bc andτ)

• Corresponding fixed effects for reduced parameterisation were also 
held constant

• Mixed effect modelling demonstrates that the reduced 
parameterisation still allows the model to behave as richly as the full 
parameter list



18

Model Comparison
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• Structural identifiability analysis has been performed on a nonlinear PK 
PD model.

• Model was rewritten into polynomial form (with extra state to ensure 
linear observation)

• Linear transformation considered
• The unidentifiable parameter are:  α,β, ac and bc and hence model is 

unidentifiable
• Unidentifiable problem is solved by parameter list reduction of the 

polynomial model
• Taylor series of the similarity transformation criteria is calculated
• The model was found to be rank deficient by one
• Core PD parameters such as Emax and EC50 can still be uniquely 

estimated
• Parameter list reduced model is globally identifiable
• Model fits obtained using the new and old parameterisations confirm the 

behaviour of the new model is indistinguishable
• In the parameter estimation, we fixed all the time constant due to data 

restriction 

Conclusion
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• Globally (unique) identifiability ≠ good fits to experimental data, and good fit to the 
model only useful if the parameter vector is unique.

• The techniques do not required physical data for the analysis but instead symbolic 
algebra obtained from the model description are manipulated to seek for the 
identifiability status. 

• Lack of identifiability does implies that for every parameter estimate, there will be 
at least one alternative parameter existed that fit the data sets equally well. So 
infinite number of parameter vectors that give the same fit even for perfect data

• If the a model is unidentifiable, infinite sets of parameter will be found and these 
will cause difficulties in parameter estimation.

• The analysis is carried out with assistance of symbolic computation software 
MATHEMATICA.

• Limitation will depends on computational power available and skills of analysis

• Structural identifiability analysis is a necessary theoretical prerequisite to 
experimental design, system identification and parameter estimation.

Remarks
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Thank you


