Population pharmacokinetics of cyclophosphamide and its 4-OH metabolite in patients with glomerulonephritis

Georgia Charkoftaki^{1,2}, Aris Dokoumetzidis³, Melanie S. Joy^{1,4}

¹University of Colorado, Skaggs School of Pharmacy, Aurora, CO, ²Yale School of Public Health, Department of Environmental Health Sciences, New Haven, CT, ³University of Athens, School of Pharmacy, Athens, Greece, ⁴University of Colorado, School of Medicine, Division of Renal Diseases and Hypertension

Objectives

The purpose of this study was to develop a population pharmacokinetic (PK) model for cyclophosphamide (CY) and its 4-hydroxy cyclophosphamide (4-OH CY) metabolite in patients with glomerulonephritis secondary to lupus and small vessel vasculitis and to identify patient characteristics that may influence the drug's absorption and disposition.

Methods: The study consisted of patients with glomerulonephritis (n=23) who participated in pharmacokinetic evaluations of CY and 4-OH CY. All patients had received monthly i.v. cyclophosphamide prior to study participation. The i.v. cyclophosphamide dosages were dependent on body surface area; mean dose 0.8 ± 0.2 g/m². Blood samples for CY and 4-OH CY determination were collected at the beginning of the infusion and at 0.5, 1, 2, 3, 4, 6, 8, 12, 18 and 24 h after commencement and were assayed by LC/MS/MS method. Kidney function, serum albumin and polymorphisms in drug metabolism and transport genes were evaluated. Plasma concentration-time data of CY and 4-OH CY (metabolite) were analyzed in two stages with a population approach using NONMEM®. 4-OH CY was analyzed conditional to the results of CY. VPC plots were generated with Phoenix®.

Results: The parent drug (CY) model was found to be one compartment with linear elimination.

$$CL_p = \theta_1 (WT/95)^{\theta_2} * exp(\eta_1)$$
 Eq. (1)
 $V_p = \theta_3 * (WT/95)^{\theta_4} * exp(\eta_2)$ Eq. (2)

Table 1: Mean values for the parameters of the parent drug and mean values from the non-parametric bootstrap.

Parent drug							
Original data set fit			Non-parametric bootstrap				
Parameter	Mean	SE	Estimate	SE			
θ ₁ (CL, L/h)	14.4	0.84	14.38	0.86			
θ_3 (V, L)	154	6.9	153.2	6.7			
θ_2	0.471	0.2	0.465	0.19			
θ_4	0.373	0.12	0.382	0.14			
IIV _{CL} %	20.4	1.59	18.7	4.3			
IIV _V %	21.2	1.90	20.1	4.6			
Additive error	1.33	0.18	1.32	0.17			

Fig.1: (i) Predicted vs Observed concentration and (ii) Individual predicted vs Observed concentration of cyclophosphamide.

Parent plus metabolite (4-OH CY): was modeled as one compartment with linear elimination. The production rate was proportional to the elimination of the parent drug.

Table 2: Mean values for the parameters of the parent-metabolite model and mean values from the non-parametiric bootstrap.

Parent-Metabolite model							
Parameter	Original data	set fit	Non-parametric bootstrap				
	Mean	%SE	Estimate	%SE			
θ_3 (K _{met} , h ⁻¹)	8	3.7	8.65	3.7			
θ_5 (V _m , L)	17.3	7.9	17.5	7.2			
θ_4 (F _m)	0.441	0.04	0.413	0.06			
Ω_3 (IIV _{Kmet} %)	33	3.9	33	6.4			
Prop error (%)	48.8	6.4	47.7	6.3			

Elimination rate constant of the 4-OH CY was $K_{met}=8~h^{-1}$. The production rate constant of 4-OH CY was $F_m*CL_p/V_p=0.041~h^{-1}$ and was found to be lower than the K_{met} , therefore half-life of 4-OH CY is determined by its production rate rather than its elimination (flip-flop pharmacokinetics).

Fig. 2: (i) Predicted vs Observed concentration and (ii) Individual predicted vs Observed concentration for the final parent-metabolite model.

Visual Predictive Check

Fig. 3: Visual Predictive Check (parent-metabolite model). The dots are the observed quantiles (5, 50 and 95%) and the solid lines the predicted quantiles (5, 50 and 95%).

Conclusions: The population PK data described here suggest that only 44% of CY gets metabolized to the 4-OH CY metabolite in patients with glomerulonephritis, while this percentage is around 75% for patients receiving CY as an anti-cancer therapeutics.