Quantifying adaptive resistance in bacteria using well-designed dynamic time-kill curve experiments

<u>Niklas Hartung¹</u> • Christoph Hethey^{2,3} • Eva B. Goebgen⁴ • Charlotte Kloft⁴ • Wilhelm Huisinga¹

¹Institute of Mathematics, University of Potsdam, Germany ²Institute of Biochemistry and Biology, University of Potsdam, Germany ³Graduate Research Training Program PharMetrX ⁴Institute of Pharmacy, Freie Universitaet Berlin, Germany

Background

In vitro time-kill curve experiments allow to study the concentration-effect relationship of antimicrobial treatments. Mathematical models leverage the experimental data by allowing to simulate microbial growth under clinically relevant concentration-time profiles and under combination therapy.

However, some dynamic processes such as adaptive resistance and persister formation (dormant state), both stress-triggered phenotypic changes, are **difficult** to quantify reliably from these experiments [1].

Design of time-kill curve experiments

<u>*D_S*-optimality</u>

- Maximise information on interesting parameters (I)
- Account for correlations (C) with nuisance parameters (N)
- Robust variant: $\log D_S$ averaged over parameters

$$FIM = \begin{pmatrix} I & C \\ C^T & N \end{pmatrix}$$

Optimality criterion [5]:

Objective

Propose tailored time-kill curve experiments to differentiate adaptive resistance and persister formation using **Optimal Design** theory.

Time-kill curve experiments

- Bacteria in a culture flask are exposed to antibiotics in an *in vitro* infection model (IVIM)
- IVIM can be static (no change in drug concentrations; no exchange of culture medium) or **dynamic** (pumping system) allows for time-varying drug concentrations; see Figure)
- Time-kill curves (TKC): obtained by repeated sampling from an IVIM and

Sketch of a dynamic *in vitro* infection model

Here: interesting $\hat{=} k_{deg,ARM}$ and ARM_{max}

 $D_{\rm S} = \det(I - CN^{-1}C^{\rm T})$

Idea for dynamic TKC experiments:

- 1. Adaptive resistance has to be triggered (high drug concentration),
- 2. For positive $k_{deg,ARM}$, adaptive resistance can wear off in a drug-free rest phase
- 3. Reduction of adaptive resistance manifests in a decrease of bacterial load after a second exposure (possibly lower) to antibiotics
- \rightarrow we consider **intermittent antibiotic exposure experiments** (and for comparison, static conditions and dynamic 1-compartment kinetics)

Prior information:

FIM_{static} (from modelling static TKC data)

 $FIM = FIM_{static} + FIM_{dynamic}$ performed planned experiment experiment

Results

Intermittent exposure experiment discriminating $k_{deg,ARM}$ values

(adapted from [2])

Bacterial growth model

Model for antibiotic combination therapy, developed previously from static TKC data and mechanistic understanding [3,4]; only meropenem effect is considered here.

Assumptions on adaptive resistance during model development:

Optimal design for different experimental setups

Assumed true parameters		Predicted standard errors (SE) for optimal design							
		SE (k _{deg,ARM})			SE (ARM _{max})				
k _{deg,ARM}	ARM _{max}	static	1-cmt	inter- mittent	static	1-cmt	inter- mittent		
0	1	0.003	0.004	0.003	0.03	0.04	0.03		
0.01	1	0.02	0.01	0.02	0.2	0.2	0.1		
0.1	1	1.3	0.2	0.02	6.8	1.2	0.1	good precision	
0	0.9	0.03	0.02	0.03	0.2	0.2	0.3	exposure desig	exposure design
0.01	0.9	0.04	0.03	0.02	0.3	0.3	0.2		
0.1	0.9	2.0	0.3	0.06	8.7	1.3	0.2		

optimality criterion ($\mathbb{E} \log D_S$) for best robust design							
static	1-cmt	intermittent					
9.09	11.17	11.47					

posure design less prominent

- Adaptive resistance does not wear off: $k_{deg,ARM} = 0 h^{-1}$
- Adaptive resistance can inhibit meropenem effect completely: $ARM_{max} = 1$

Could these parameters have been determined from dynamic time-kill curve experiments?

Conclusions

• Static TKC data can be leveraged for designing dynamic TKC experiments • Tailored experiments contribute to elucidating bacterial resistance mechanisms • Robust simultaneous characterisation of several resistance mechanisms remains challenging

References

[1] Jacobs et al.: Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling. PLoS Comput Biol (2016).

[2] Michael J., PhD thesis, Martin-Luther-Universitaet Halle-Wittenberg (2011).

[3] Hethey et al.: Impact of the intracellular ribosomal concentration on in vitro bacterial growth kinetics and the antibacterial effect of linezolid on S. aureus in

time-kill assays. PAGE 25 (2016).

[4] Wicha et al.: Pharmacodynamic and response surface analysis of linezolid or vancomycin combined with meropenem against Staphylococcus aureus. Pharm Res (2014), 32(7):2410-8.

[5] Studden: Ds-Optimal Designs for Polynomial Regression Using Continued Fractions. The Annals of Statistics (1980) 8(5):1132-41.

Contact

For additional information, please contact Niklas Hartung,

