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In vitro time-kill curve experiments allow to study the concentration-effect
relationship of antimicrobial treatments. Mathematical models leverage the
experimental data by allowing to simulate microbial growth under clinically
relevant concentration-time profiles and under combination therapy.
However, some dynamic processes such as adaptive resistance and persister
formation (dormant state), both stress-triggered phenotypic changes, are difficult
to quantify reliably from these experiments [1].

Objective
Propose tailored time-kill curve experiments to differentiate adaptive
resistance and persister formation using Optimal Design theory.

Background

Time-kill curve experiments

Results

Bacterial growth model

• Bacteria in a culture flask are exposed to
antibiotics in an in vitro infection model
(IVIM)

• IVIM can be static (no change in drug
concentrations; no exchange of culture
medium) or dynamic (pumping system
allows for time-varying drug concen-
trations; see Figure)

• Time-kill curves (TKC): obtained by
repeated sampling from an IVIM and
quantifying bacterial concentrations

Assumptions on adaptive resistance during model development:

• Adaptive resistance does not wear off: k"#$,&'( 	= 	0	h-.

• Adaptive resistance can inhibit meropenem effect completely: ARM234 	= 	1

Could these parameters have been determined from 
dynamic time-kill curve experiments?
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N / P: susceptible / persister cells
ARM: adaptive resistance to meropenem
MER / eMER: meropenem concentration / effector species
𝑘7: growth rate function depending on cell state (log- vs. lag-phase)

Design of time-kill curve experiments

FIM = FIM:;3;<=	
>#?@A?2#"	
#4>#?<2#B;

+ FIM"DB32<=
	

>E3BB#"	
#4>#?<2#B;

Prior information:

FIM:;3;<= (from modelling static TKC data)

• Static TKC data can be leveraged for designing dynamic TKC experiments
• Tailored experiments contribute to elucidating bacterial resistance mechanisms
• Robust simultaneous characterisation of several resistance mechanisms remains

challenging
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Sketch of a dynamic in vitro infection model
(adapted from [2])

Assumed true 
parameters

Predicted standard errors (SE) for optimal design
SE (k"#$,&'() SE (ARM234)

𝒌𝐝𝐞𝐠,𝐀𝐑𝐌 𝐀𝐑𝐌𝐦𝐚𝐱 static 1-cmt inter-
mittent

static 1-cmt inter-
mittent

0 1 0.003 0.004 0.003 0.03 0.04 0.03
0.01 1 0.02 0.01 0.02 0.2 0.2 0.1
0.1 1 1.3 0.2 0.02 6.8 1.2 0.1
0 0.9 0.03 0.02 0.03 0.2 0.2 0.3
0.01 0.9 0.04 0.03 0.02 0.3 0.3 0.2
0.1 0.9 2.0 0.3 0.06 8.7 1.3 0.2

Intermittent exposure experiment discriminating k"#$,&'( values

optimality criterion (𝔼	log	DU) for best robust design
static 1-cmt intermittent
9.09 11.17 11.47

𝐷W-optimality

• Maximise information on interesting parameters (𝐼)
• Account for correlations (𝐶) with nuisance para-

meters (𝑁)
• Robust variant: log	𝐷W averaged over parameters

Here: interesting =[ k"#$,&'( and	ARM234

𝐹𝐼𝑀	 = 	 𝐼 𝐶
𝐶^ 𝑁

Optimality criterion [5]:

𝐷W = 	det 𝐼 − 𝐶𝑁-.𝐶^
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Idea for dynamic TKC experiments:

1. Adaptive resistance has to be triggered (high drug concentration),
2. For positive k"#$,&'(, adaptive resistance can wear off in a drug-free rest phase
3. Reduction of adaptive resistance manifests in a decrease of bacterial load after 

a second exposure (possibly lower) to antibiotics

à we consider intermittent antibiotic exposure experiments (and for 
comparison, static conditions and dynamic 1-compartment kinetics)

Model for antibiotic combination therapy, developed previously from static
TKC data and mechanistic understanding [3,4]; only meropenem effect is
considered here.

Optimal design for different experimental setups

For additional information, 
please contact Niklas Hartung,

niklas.hartung@uni-potsdam.de

Contact

benefit of intermittent ex-
posure design less prominentà

good precision
with intermittent
exposure design
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assuming kdeg,ARM = 0h−1

assuming kdeg,ARM = 0.01h−1


