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METHOD 

Individual exposure was simulated from a popPK 

model using ARPEC patient’s demographic 

characteristics. Identification of optimal 

individualized dosing strategies via minimization of 

a utility function. Dosing interval τ and weight 

CO were the parameters to be optimized. The 

utility function implemented in NONMEM1 allows 

quantification of 

1. the risk associated with the deviation from the 

treatment target (PK/PD index:100%T>MIC) i.e. 

aiming to achieve drug concentrations above the 

MIC for the entire dosing interval (efficacy) 
 

𝑌1 = ln 𝟏𝟎𝟎%𝑻 > 𝑴𝑰𝑪 − ln⁡(%𝑇 > 𝑀𝐼𝐶)𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
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2. to minimize the time that neonates are exposed 

to concentrations below the MIC (regrowth) i.e. for 

> 4 hours per dosing interval 
 

𝑌2 = 𝟒 − 𝑇𝑖𝑚𝑒 < 𝑀𝐼𝐶 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
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3. to minimize the amount administered in excess 

(AIE) (adverse events) 
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τ : estimated dosing interval 

τ𝑑𝑜𝑠𝑒 : dosing interval resulting in 100%T> MIC for each 

individual 
 

𝑌3 = 0 − 𝐴𝐼𝐸 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
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The utility function to minimize is⁡ 
⁡ 

𝑌 = 𝑌1 + 𝑌2 + 𝑌3 + ⁡ɛ  
 

Estimation of weight CO was a stepwise search 

in which the COs were restricted to take value 

multiples of 0.5 kg. 
 

Single dose administered was fixed to 50 mg/kg, 

the non-species related breakpoint for amoxicillin 

resistance of 8 mg/L was used for the MIC2. 
ARPEC data are used under the kind permission of Prof. Herman Goossens 

and Ms Ann Versporten , University of Antwerp, and the ARPEC project group 

RESULTS 

CONCLUSION 
• The method facilitate dose decision based on quantitative 

rational drug dosing using a combined utility function. This 

is particularly valuable in the dynamic neonatal population 

which exhibits highly correlated weight and age values. 

• It was applied to body weight but it can be extended to 

other demographic factors that may be clinically relevant 

and facilitate implementation during routine clinical care. 
Limitation: the PK model used for simulations requires validation 

OBJECTIVE 
Optimize a priori amoxicillin dosing regimen by 

individualizing dosing frequency of 50 mg/kg 

dose in neonates according to weight cut-offs 

(CO) with the aim to: 

- achieve antibiotic exposure to concentrations 

above the minimum inhibitory concentration 

(MIC) during the entire dosing interval 

(100%T>MIC) 

- while avoiding drug administered in excess 

and prolonged time below the MIC 

For a fixed dose of 50 mg/kg, optimum weight COs were 3 kg 

for 2 categories, and 1.5 kg and 3 kg for 3 categories. 

However, the difference in estimated dosing interval per weight 

subgroup was small for both 2 or 3 dosing categories (table): 

Fixed dose 50 mg/kg 

2 dosing categories 3 dosing categories 

Weight  

(kg) 

Dosing interval 

(hrs) 

Weight 

(kg) 

Dosing interval  

(hrs) 

 < 3 16.4  < 1.5 18.5 

 ≥ 3 15.3  1.5 - 3 16.2 

 ≥ 3  15.8 

This suggests that amoxicillin exposure might be optimal 

without neonatal dosing categories based on weight cut-offs 

when using 50 mg/kg as a fixed dose.  
 

Driven by efficacy endpoints and for clinical implementation, a 

12h interval appears to be the most convenient. In terms of 

efficacy, 50 mg/kg every 12h results in 93% of patients 

reaching 100%T>MIC and 1.5% being > 4h below the MIC 

after the first dose 
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