Pharmacogenetics and Individualized Dosage Regimens

R Jelliffe1, M Neely2, and V Ozdemir2

Laboratory of Applied Pharmacokinetics, USC Keck School of Medicine, Los Angeles CA
2University of Montreal, Montreal, Canada

#1938

Acknowledgements/Declarations

Abstract

Objectives: To describe relationships between genetic testing and variations in gene expression over time in a patient and how best to use this information in planning, monitoring, and adjusting maximally precise dosage regimens.

Methods: The structure of optimally precise Bayesian adaptive control is briefly reviewed, to show the context in which genetic/genomic information can be used.

Results: Population pharmacokinetic / pharmacodynamic (PK/PD) models often base parameter distributions with significant genetically determined subpopulations, such as fast and slow metabolizers. The assumed normal or lognormal distributions are often not present. Mixture models to describe bimodal distributions have become popular.

Pharmacogenomics, from the 1950’s, examines monogenic variations in drug behavior. Pharmacogenomics, from the 1990’s, is based on high-throughput omics technologies [1]. It describes multi-ge or genome-wide variations. Association studies correlate genomic and drug effect variations in individuals and populations. Unfortunately, only about 3% of published human genome studies presently focus beyond discovery-oriented applications [2]. Pharmacogenomic variation must be integrated into non-genetic population modeling and maximally precise stochastic Bayesian adaptive control. This permits identification of subpopulations which convert raw data into maximally precise individualized dosing regimens. Pharmacogenomics, pharmacometrics, pharmacokinetics, population modeling, and Bayesian adaptive control approaches have not intersected meaningfully to date. Currently used covariates need to be reconsidered in light of genomic variations. However, most genetic variation appears to be determined by individual variation, not race [3].

Conclusions: Optimally precise Bayesian adaptive control sets the structure to include human genetic/genomic information to optimize therapy [4]. As genomics, pharmacometrics, and adaptive control are rapidly coalescing, there is much to be learned in all fields.

NON-PARAMETRIC (NP) POPULATION MODELS

• The theorems of Lindsay, Mallet, and Caratheodory prove the most likely parameter distribution is a discrete joint density with up to one support point per subject, weighted by its probability.

• The NP distribution is not set by any equation, only by the data.

• NP algorithms can discover, locate, and quantify unsuspected subpopulations (e.g. genetic).

• NP likelihoods are exact. Behavior is statistically consistent such that results asymptotically approach the truth.

• NP distributions permit Multiple Model (MM) dosage regimen design, with multiple weighted predictions per subject.

References


Support from NIH-NIAID 1 K25 AI047136 (MKN) and NIH-MMR, ROI ES058563 (AW and R) is gratefully acknowledged.

None of the authors has a financial or contractual conflict of interest.

Conclusions

• Optimally precise MM adaptive control sets the structure to include human genetic/genomic covariate information to optimize therapy

• Our Hybrid Bayesian MM method has even greater potential to control outlier patients.

• Phenotypic expression (i.e. drug concentrations) may be poorly predicted despite genotypic information; however MM methods may better account for all pharmacokinetic covariates, known and unknown.

Figure 2 - Good observed vs. predicted (Left) with multiple predictions clustering around observed (Center), and Bayesian posterior model (Right). HB-­‐MM recommended dose in Figure 2, showing that most points have an extremely low posterior probability and contribute little to controlling this patient.

HYBRID BAYESIAN-MM (HB-MM) UPDATING

• Start with MAP Bayesian, with the ability to change the relative standard deviation of prior parameter estimates, i.e. controlling how informative the prior model is.

• Add support point "patch" around MAP Bayesian estimate, augmenting pop model in the area where the patient is now known to be.

• Then do MM Bayesian on the augmented pop model, controlling the weight (probability) of the patch relative to the remainder of the model.

GOOD FOR PATIENTS WHOSE PARAMETERS ARE OUTSIDE WELL SUPPORTED REGIONS OF THE MODEL (Figures 3 and 4).

Figure 2 - Good observed vs. predicted (Left) with multiple predictions clustering around observed (Center), and Bayesian posterior model (Right). HB-­‐MM recommended dose in Figure 2, showing that most points have an extremely low posterior probability and contribute little to controlling this patient.

Our Hybrid Bayesian MM method has even greater potential to control outlier patients.

• Phenotypic expression (i.e. drug concentrations) may be poorly predicted despite genotypic information; however MM methods may better account for all pharmacokinetic covariates, known and unknown.

Figure 3 - Poor MM observed vs. predicted (Left) and much better HB-MM (Right). MM dose recommendation to achieve trough concentration of 1,000 µg/L was 400 mg when patient had observed concentration of 10 mg/L. HB-MM recommended dose to achieve the same trough concentration was 100 mg every 48 hours - much more reasonable.

Figure 4 - Prior model (refer to Figure 1) now augmented with patch points at very low values for the elimination rate constant, KSS (Left) and the Bayesian posterior model showing the only probable points for this patient to be the patch points, far below the range of the original model. The patient was subsequently shown to have a slow metabolizing polymorphism, but phenotypically was much more severe than would be predicted from the genotype alone.

Conclusions

• Optimally precise MM adaptive control sets the structure to include human genetic/genomic covariate information to optimize therapy

• Our Hybrid Bayesian MM method has even greater potential to control outlier patients.

• Phenotypic expression (i.e. drug concentrations) may be poorly predicted despite genotypic information; however MM methods may better account for all pharmacokinetic covariates, known and unknown.