BACKGROUND AND OBJECTIVES

Controlled-release (CR) formulation of carbamazepine (CBZ) tablets, in contrast to immediate-release (IR) form, show lower peak–trough fluctuation of CBZ concentration which leads to less adverse effects, and allow more convenient twice-daily dosing regimen. The aim of the study was to investigate relative bioavailability (F_R) of CR relative to IR CBZ tablets.

METODS

Study design

Retrospective routine TDM data from 2003-2005 period from the Unit for Antiepileptic Drugs at the Institute of Mental Health, Belgrade, Serbia. All patients ($n=379$) were diagnosed with epilepsy. Therapy: carbamazepin (CBZ), mono- or poly-therapy CBZ was administered 2–4 times per day in the form of 200mg IR tablets (Karbamazepin; Galenika, Belgrade, Serbia, or Karbatin; Hemofarm, Vrsac, Serbia) or 400mg CR tablets (Tegretol CR400; Novartis Pharma, Basel, Switzerland). 1–2 blood samples per patient were collected. Assay: EMIT®COBAS MIRA (Hoffmann la Roche LTD). Inter- and intra- CV <10%. Total CBZ concentrations were measured. Covariates available from patients’s chart whose effect was examined as weight, age, gender, smoking status, CBZ daily dose, co-therapy (phenobarbital, valproic acid, lamotrigine, benzodiazepines).

RESULTS

Model building

Table 2 – Population pharmacokinetic analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BASE MODEL</th>
<th>FINAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_a (h^{-1})</td>
<td>-0.077</td>
<td>0.224</td>
</tr>
<tr>
<td>V/F</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

When final NONMEM run was repeated with altered k_a fixed at three times lower and three times greater values for both, IR and CR formulation, parameter estimates changed by less than 7 % compared to the final run results. Similarly, with variation of V/F at lower and upper limit of its usual literature reported range (0.8 - 2 L/kg), no more than 6 % difference in estimated parameters was observed. Alteration of k_a and V/F resulted in δOBJ in the range between -0.762 and +41.745.

Table 1 – Patients’ characteristics

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>LEARNING SET</th>
<th>VALIDATION SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of SS samples</td>
<td>423</td>
<td>72</td>
</tr>
<tr>
<td>Number of patients</td>
<td>265</td>
<td>46</td>
</tr>
<tr>
<td>Number of patients taking CR CBZ tablets</td>
<td>124 (47 %)</td>
<td>25 (54 %)</td>
</tr>
</tbody>
</table>

Pharmacokinetic analysis

NONMEM (Ver.V,level 1.1,GlobalMax LLC,USA), Visual-MM (Ver.V, RDPP,France). One compartment model with first order absorption and elimination (ADVAN2 TRANS2 PREDPP subroutine), FOCE estimation

Relative clearance was estimated (CL/F)

Analysis was performed by forward inclusion of covariates into the base model. δOBJ>3.844 ($p<0.05$) and backward elimination from full model: δOBJ>6.63 ($p<0.01$).

CONCLUSIONS

In the present study, no difference in bioavailable fraction between CR and IR formulations was observed ($F_R = 1$). The results from the study with sparse data are in compliance with the results in a previously reported data-rich study with well-timed blood samples during the absorption phase.

References

Katarina Vucicevic (1)*, Branislava Miljkovic (1), Milena Pokrajac (1), Iztok Grabnar (2)

(1) Department of Pharmacokinetics, Faculty of Pharmacy, University of Belgrade, Serbia
(2) Chair of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Slovenia