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Background and motivation

Oscillating biomarker response-time courses challenge modelling of drug intervention. A periodical-
ly recurring pattern is typically seen for the stress hormone cortisol. This pattern can be captured by
mechanism-based turnover models. Bayesian hierarchical modelling allows for full quantification of
parameter uncertainty while also capturing the population aspects typical to nonlinear mixed effects
modelling. Inter-occasion variability (IOV) is incorporated in addition to inter-individual variability
(ITV). Finally, the adjusted model is used to predict specificity of a clinical test.

Dexamethasone exposure and cortisol response

a) Two compartment model with bolus dose and 3h constant-rate infusion
Data were collected for four different dosing regimens (bolus + total infusion amount)
Control (saline solution), 0.1 + 0.07 ug / kg, 1.0 + 0.7 ug / kg, 10 + 7 ug / kg

b) Turnover model with oscillating turnover rate and drug-induced suppression
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Data previously published and model adapted from [1].

Key findings

— New techniques were developed for graphical analysis of the oscillatory cortisol response
— A predictive hierarchical model was successfully constructed and applied to equine cortisol data after
dexamethasone intervention

— Oscillatory behaviour and level of variability had great impact on the sparse-sample DST-design

Bayesian hierarchical model Analytic Solution

— Incorporation of IIV and IOV For a fixed drug concentration C,
— Conceptually similar to nonlinear mixed ef-
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: — Calculate initial values
@_’ — Establish drug-response equilibrium curves

Measurements, k =1, ..., K
Occasions, j =1,...,J

Individuals,i =1, ...,1

Parameter estimates, uncertainty and model predictions

Parameter estimates
— Parameters were estimated in a Bayesian framework. Samples from the joint probability model
were simulated with the Hamiltonian Monte Carlo algorithm implemented in Stan [2].
— Priors for hyperparameters were chosen by a meta-analysis of a previous study [1].
- Estimated ranges including IV and IOV for parameters of the cortisol response model are shown
— Bayesian estimation allows estimation of three sources of variability and uncertainty
— Uncertainty in typical values
— Uncertainty in estimated variance components
— Model uncertainty/Residual variance
— Variance components were hard to identify (data from N = 6 horses), regularisation with priors
aided the parameter estimation
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Variability of oscillation parameters

— Through Monte Carlo simulations, the av- - Average baseline is subject to both IIV and
erage baseline A and amplitude B, as de- IOV resulting in higher variability
scribed above, were simulated. — Both parameters are suppressed in mag-

nitude and variability for increasing drug
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Parameter Estimated range including ITV/IOV (quantiles)
2.5% 25% 50% 75% 97.5%
Kavg 6.44 9.22 12.7 17.2 23.5
o4 1.38 3.00 5.40 9.38 17.9
L —7.54 —5.44 ~3.71 —2.17 0.494
K, 0.221 0.272 0.315 0.378 0.493
I . 0.874 0.900 0.923 0.944 0.965
ICs, 0.00490 0.0136 0.0298 0.0628 0.155
n 1.03 1.26 1.57 2.00 2.61
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Predicted specificity of a dexamethasone suppression test (DST)

- Two previously published protocols were
evaluated . Both stated specificity.
— Protocol 1 in [3]: 100% specificity
— Protocol 2 in [4]: 76% specificity o % ==
— Intravenous administration of 40 ug / kg of | |
dexamethasone at 9.00 (protocol 2) or 17.00
o’clock (protocol 1)
— Cortisol sample R,z taken after 19 hours
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and “hours after administration”
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