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Background and motivation

Oscillating biomarker response-time courses challenge modelling of drug intervention. A periodical-
ly recurring pattern is typically seen for the stress hormone cortisol. This pattern can be captured by 
mechanism-based turnover models. Bayesian hierarchical modelling allows for full quantification of 
parameter uncertainty while also capturing the population aspects typical to nonlinear mixed effects 
modelling. Inter-occasion variability (IOV) is incorporated in addition to inter-individual variability 
(IIV). Finally, the adjusted model is used to predict specificity of a clinical test.

Dexamethasone exposure and cortisol response

a)	 Two compartment model with bolus dose and 3h constant-rate infusion
Data were collected for four different dosing regimens (bolus + total infusion amount)
Control (saline solution), 0.1 + 0.07 μg / kg, 1.0 + 0.7 μg / kg, 10 + 7 μg / kg

b)	 Turnover model with oscillating turnover rate and drug-induced suppression
 

Bayesian hierarchical model

For a fixed drug concentration Cp

where

Used to
– Calculate initial values
– Establish drug-response equilibrium curves

Parameter estimates, uncertainty and model predictions

Parameter	estimates
– Parameters were estimated in a Bayesian framework. Samples from the joint probability model 

were simulated with the Hamiltonian Monte Carlo algorithm implemented in Stan [2]. 
– Priors for hyperparameters were chosen by a meta-analysis of a previous study [1].
– Estimated ranges including IIV and IOV for parameters of the cortisol response model are shown
– Bayesian estimation allows estimation of three sources of variability and uncertainty

– Uncertainty in typical values
– Uncertainty in estimated variance components
– Model uncertainty/Residual variance

– Variance components were hard to identify (data from N = 6 horses), regularisation with priors 
aided the parameter estimation

Key findings

– New techniques were developed for graphical analysis of the oscillatory cortisol response
– A predictive hierarchical model was successfully constructed and applied to equine cortisol data after 

dexamethasone intervention
– Oscillatory behaviour and level of variability had great impact on the sparse-sample DST-design

Predicted specificity of a dexamethasone suppression test (DST)

– Two previously published protocols were 
evaluated . Both stated specificity.
– Protocol 1 in [3]: 100% specificity
– Protocol 2 in [4]: 76% specificity

– Intravenous administration of 40 μg / kg of 
dexamethasone at 9.00 (protocol 2) or 17.00 
o’clock (protocol 1)

– Cortisol sample Rafter taken after 19 hours 
(protocol 1) or 24 hours (protocol 2)

– DST indicates healthy subjects for 
 Rafter < 10 μg / L
– Clear dependence on “administration time” 

and “hours after administration”

Analytic Solution

Variability of oscillation parameters
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Data previously published and model adapted from [1].

– Incorporation of IIV and IOV
– Conceptually similar to nonlinear mixed ef-

fects modelling
– Inclusion of prior knowledge allows for regu-

larisation of the estimation

Parameter Estimated range including IIV/IOV (quantiles)
2.5% 25% 50% 75% 97.5%

𝑘𝑘avg 6.44 9.22 12.7 17.2 23.5
𝛼𝛼 1.38 3.00 5.40 9.38 17.9
𝑡𝑡0 −7.54 −5.44 −3.71 −2.17 0.494
𝑘𝑘out 0.221 0.272 0.315 0.378 0.493
𝐼𝐼max 0.874 0.900 0.923 0.944 0.965
𝐼𝐼𝐼𝐼50 0.004 90 0.0136 0.0298 0.0628 0.155
𝑛𝑛 1.03 1.26 1.57 2.00 2.61

Model	predictions
– 95% credible intervals for the predicted 

time-courses are shown
– Oscillation and suppression are being cap-

tured
– Reduction of variability for increasing drug 

doses is visible.

– Through Monte Carlo simulations, the av-
erage baseline A and amplitude B, as de-
scribed above, were simulated.

– Average baseline is subject to both IIV and 
IOV resulting in higher variability

– Both parameters are suppressed in mag-
nitude and variability for increasing drug 
concentration
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