Exposure-response analysis of vilaprisan describing uterine fibroid size by population PK/PD modelling

Hauke Rühs¹, Gabriele Sutter¹, Matthias Frei¹, Marcus-Hillert Schultze-Mosgau², Dirk Garmann¹ and Bart Ploeger¹

¹Clinical Pharmacometrics, Bayer AG, ²Clinical Pharmacology, Bayer AG

INTRODUCTION AND OBJECTIVES

- Vilaprisan (VPR) is a highly potent and selective progesterone receptor modulator (SPRM) which is currently being developed for the long-term treatment of uterine fibroids. Evidence for efficacy in reducing heavy menstrual bleeding associated with uterine fibroids is based on the clinical experience with other SPRMs.
- Assess the exposure-response relationship of vilaprisan on uterine fibroids in a Phase 2b dose finding study
- The predictive performance of the model was evaluated by performing visual predictive checks (VPC) of fibroid volume vs. time and shrinkage vs. exposure.

Figure 2. VPC of the fibroid volume vs. time after dose by treatment arm

• Characterize the variability and uncertainty of the estimated parameters

METHODS

• Data from a Phase 2b study [1], investigating efficacy and safety of different daily oral VPR doses over a treatment period of 3 months in women with symptomatic uterine fibroids, was analyzed by nonlinear mixed-effects modelling using NONMEM 7.3 [2].

Figure 1: Study design of ASTEROID 1

US: ultra sound; HMB: heavy menstrual bleeding; EoT: end of treatment

- A population PK model based on healthy subject data from two Phase 1 studies was applied to the data of the Phase 2b study in order to estimate the Empirical Bayes PK estimates and derive individual steady-state exposure (AUC(0-24)_{ss}).
- The change in fibroid volume over time of the largest fibroid at baseline (shrinkage) was analyzed.

RESULTS AND CONCLUSIONS

• The untreated fibroid volume was described as a constant volume, where the drug effect was implemented by an E_{max} model on a first order decrease in fibroid volume.

Table 1: Mean serum hormone concentrations during treatment

shaded area: 5th and 95th percentiles of the simulations with inter-individual variability red area: 5th and 95th percentiles of the simulations with parameter uncertainty red dashed line: median of the simulations black circles with solid line: median of the binned observations colored symbols with lines: median and minimum and maximum of AUC of the respective dose

0.5 mg

1 mg

 An exposure-response relationship for vilaprisan could be established by population PK/PD modelling, showing a high exposure driven effect of vilaprisan on uterine fibroid size.

4 mg

2 mg

- The predictive performance of the developed model could be demonstrated by VPCs.
- At the highest dose a shrinkage in fibroid volume relative to baseline of 53.0% was

BSL [mL]	44.5 (6.22)	132	Untreated fibroid volume
E _{max} [1/year]	3.55 (16.3)	95.8	Max. shrinkage of the fibroids under treatment
EAUC ₅₀ [µg*h/L]	59.0 (42.9)		AUC(0-24) _{ss} level of VPR at which half of E _{max} was reached

determined after 3 months of treatment.

REFERENCES

0 mg

1. Bradley L, Results of the ASTEROID (AssessSafety and Efficacy of Vilaprisan in Patients with Uterine Fibroids) 1 study: A Phase 2, Placebo-controlled dose finding study. 2016.

2. Beal SL, Sheiner LB, Boeckmann AJ & Bauer RJ (Eds.) NONMEM Users Guides. 1989-2011. Icon Development Solutions, Ellicott City, Maryland, USA.

ACKNOWLEDGEMENTS

Klaas Prins developed the population PK model.

Asteroid

Parameter