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Outline

• The Hazard: Biological basis for survival

• Types of Event and their Likelihood

» Exact time

» Right censored

» Interval censored

» Count data

• Joint Modelling of Continuous and Event Data
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How Not to Understand

Time to Event

Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 

4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 

Lancet. 1994;344:1383-89.

Relative Risk=0.7 (0.58-0.8 95%CI)

 

This landmark study led to the introduction of 
statins with a major impact on cardiovascular 
morbidity and mortality worldwide. 
However, this Kaplan-Meier plot shows that 
statins don‟t seem to have any effect on 
survival until at least a year after starting 
treatment. 
As far as I know there has never been any 
good explanation of why the benefits of statins 
are so delayed but when properly analysed 
this kind of survival data can describe the time 
course of hazard and give a clearer picture of 
how long it takes for statins to be effective. 
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Why do women live longer 

than men?
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http://www.allowe.com/Humor/whymendieyou
nger.htm 
 
 

Slide 
6 

©NHG Holford, M.Lavielle 2011, all rights reserved.

Life is hazardous

“… a bathtub-shaped hazard is appropriate in populations followed from birth.” 
Klein, J.P., and Moeschberger, M.L. 2003. Survival analysis: techniques for censored and truncated data. New York: 

Springer-Verlag.

http://en.wikipedia.org/wiki/Bathtub_curve “The bathtub curve”

,...),,( ageracesexfHazard

 

The hazard describes the death rate at each 
instant of time. The shape of the hazard 
function over the human life span has the 
shape of a bathtub.  
US mortality data shows the hazard at birth 
falls quickly and eventually returns to around 
the same level by the age of 60. The hazard is 
approximately constant through childhood and 
early adolescence. The onset of puberty and 
subsequent life style changes (cars, drugs,…) 
adopted by men increases the hazard to a 
new plateau which lasts for 10 to 20 years. 
It would require a time varying model to 
describe how development (children) and 
ageing (adults) are associated with changes in 
death rate. 
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Why Pharmacokineticists are 

Time to Event Experts

• What is an elimination rate constant?

» Proportionality factor relating elimination to amount of drug

AmountkRateOut

• What is a hazard?

» Proportionality factor relating death rate to number of people 

still alive

ALIVENhRateOut

• Everything you know about elimination rate constants 

applies to hazards!

 

The elimination rate constant is the hazard of 
a molecule „dying‟. 
Elimination rate constants and hazards always 
have units of 1/time 
Unlike most drugs the hazard is not usually 
constant („first-order elimination‟) but may 
change with time („time dependent clearance‟) 
or with the number of people („concentration 
dependent clearance‟) 
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PK and Survival

Drug Events

Rate of loss
N=people alive

A=molecules remaining

Hazard

Integral AUC Cumulative Hazard

Non-parametric Non-compartmental Kaplan-Meier

Time Course

N
dt

dN
Ak

dt

dA
el

elk

)exp()( ttS)exp()( tktC el

 

The event rate is frequently scaled to a 
standard number of persons e.g. death rates 
per 100,000 people. 
Hazard models are more typically scaled to a 
single person. 
Pharmacokinetic models are scaled to the 
dose. In this example a unit dose is assumed 
for the time course of concentration. 
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Some examples of 

baseline hazard functions

Survivor Function P(T>t)Hazard Function (t)
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Gompertz
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Distribution

 

The hazard function is associated with a 
distribution of event times. Some common 
distributions have names e.g. Gompertz (one 
of the first mathematicians to explore survival 
analysis).  
Standard baseline hazard functions used by 
statisticians are typically chosen for their 
mathematical simplicity rather than any 
biological reason. (comment from Marc: not 
true and not relevant at all) 
 
The biology of event time distributions is 
largely based on descriptive and empirical 
approaches. However, the hazard is the way 
to introduce biological mechanism in order to 
aid understanding of the variability of time to 
event distributions. 
 
The Weibull distribution is traditionally written 
as a power function of time. It can be 
reparameterized (as shown here) to show it‟s 
close connection to the exponential 

distribution (when 1 is zero) and the 
Gompertz distribution (ln(time) instead of 
time).  (comment from Marc: “technical” 
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comment of little interest for this tutorial) 
Note that the Weibull has the often non-
biological property of a zero hazard when time 
is zero.  (comment from Marc: not true and not 
relevant) 
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Proportional hazards model

nn xxx
e(t)λt λ

...

0
2211)( 

Exponentiation of the explanatory variable function ensures 

non-negative hazards

(t) : baseline hazard function, 

• parametric (constant, Weibull, Gompertz,…) 

• non parametric (Cox model)

x1 , x2 , … , xn independent variables (covariates)

 

The explanatory variable function is quite 
empirical. This form is used because there are 
some simple solutions for integrating the 
hazard and the exponential form ensures that 
the hazard is always non-negative. 
 
The Cox proportional hazards model is a 
semi-parametric version of this parametric 
model.  

The Cox model does not estimate 0(t) but 
assumes it is similar for all cases of the 
explanatory variables.    (Comment from Marc: 
this remark is incorrect and should be 
replaced by ““Sir David Cox observed that if 
the proportional hazards assumption holds 
(or, is assumed to hold) then it is possible to 
estimate the effect parameter(s) without any 
consideration of the hazard function”.) 
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nnSEX xSEXx
e(t)(t)

...

0
11  

If the SEX is 0 for females and 1 for males and 

the value of βSEX is 0.693 then the hazard ratio 

for men is 2 (compared to women). 

Example of proportional 

hazards model

 

The coefficients of the exponential function 
are convenient for describing how the hazard 
varies with the explanatory variable. 
Exponentiation of the coefficient gives the 
hazard ratio for the effect of the explanatory 
variable. 
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Hazard and Survival

Hazard function

Cumulative hazard function

Survival function

Probability density function

Cumulative distribution function

)(t
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Marc: I removed the word „relative‟ before 
likelihood in the definition of pdf. The pdf IS 
the likelihood. There is nothing „relative‟. 
============= 
Hazard is the instantaneous rate of the event. 
The hazard model can be of any form but the 
hazard cannot be negative. 
As time passes the cumulative hazard 
predicts the risk of having the event over the 
interval 0-t.  
The risk in any interval a-b is obtained by 
integrating hazard with respect to time over 
this interval a-b. In case of multiple events, the 
risk in interval a-b is the expected number of 
events in this interval. 
The probability of survival (not having the 
event)  can be predicted from the cumulative 
hazard. This is called the survivor function.  
The probability density function (pdf) 
describes the likelihood for this random event 
to occur at a given time. It can be calculated 
from the survivor function and hazard at that 
time.  
The cumulative distribution function, i.e. 
P(T<t), is the integral of the pdf between 0 and 
t. 
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Likelihood of a single event

t0=0
time

x
T=a

1) Exact time of event

),0()()( a

aT

eaap

  event the of likelihood

 

Single event observations (e.g. death) have 
just one observation event. 
The likelihood of a single event is the pdf. 
Note that this is not the probability of the event 
at that time. 
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Likelihood of a single event

2) Right censored event

t0=0
time

|
tend=a

/ / / / / / / / / / / / / / / / / / / / /

?

T > a

),0()( a

aT

eaTP

  event the of likelihood

 

If the event is not observed at the end of the 
experiment, it is “right-censored” : it will 
(maybe) occur after t_end = a 
The likelihood of this right-censored event is 
P(t>a), i.e. the survivor function computed at 
time t=a. 
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Likelihood of a single event

3) Interval censored event
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Assume now that the only information 
available is that the event occurred in an 
interval a-b: this is called an “interval censored 
event”. 
 
The likelihood of this interval censored event 
is the probability that the event occurred 
between a and b 
 

•  A first approach for computing this 
probability P(a<T<b) decomposes this 
probability as follows: 
   P(a<T<b) = P(T<b) – P(T<a) 
                  = 1-exp(-Lambda(0,b))-1+exp(-
Lambda(0,a)) 
                  = exp(-Lambda(0,a)) x (1-exp(-
Lambda(a,b))) 
 
This first approach is only valid for single 
events and cannot be extended to repeated 
time to events (RTTE) 
 

•  A second approach for computing this 
probability P(a<T<b) decomposes the 
information a<T<b into two successive 
observations: 

• At time a, the event was not 
observed yet:  we know that 
T>a. Then, the first component 
of the likelihood is the 
probability P(T>a) = exp(-
Lambda(0,a))  

• At time b, the event was 
observed: we know that T<b, 
given the previous information 
that T>a. Then, the second 
component of the likelihood is 
the conditional probability 
P(T<b|T>a), i.e. the cumulative 
distribution function computed 
on the interval a-b: 1-exp(-
Lambda(a,b)) 

   Then,  
   P(a<T<b)  = P(T>a) x P(T<b|T>a)  
                   = exp(-Lambda(0,a)) x (1-exp(-

Lambda(a,b))) 
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We will see that this second approach can 

easily be extended to repeated time to 
events (RTTE) 
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Encoding Single Events

x
T=a

DV=1

|/ / / / / / / / /
T > a

DV=0

| / / / / / / / / / /

T > a

|
T < b

DV=2DV=0

Exact time of event

Right censored event

Interval censored event

 

Usually, DV=1 is used for an exact time event 
and DV=0 for a right censored event. 
In the case of an interval censored event, we 
need an additional coding for the end of the 
interval. We will use DV=2 in this tutorial. 
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Encoding Single Events

ID TIME DV MDV
(NONMEM)

Comment Likelihood

1 0 . 1 Start  observing

1 50 1 0 Exact Time Event e

2 0 . 1 Start observing -

2 100 0 0 Censored Event e

3 0 . 1 Start observing -

3 55 0 0 Start Event Interval e

3 70 2 0 End Event Interval 1 - e

 

A record at time=0 is needed to define when 
the hazard integration starts.  
Remark: the MDV data item is required by 
NONMEM: it is a reminder that that the 
interval censored event computes the 
likelihood from two observation events 
(MDV=0). 
This MDV column is not required by 
MONOLIX since the information given by this 
column already exists in the DV column. 
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Single Event Time Varying Hazard (CP) 

NONMEM
$ESTIM MAXEVAL=9990 METHOD=COND

NSIG=3 SIGL=9 

LAPLACE LIKE

$THETA

10  FIX    ; CL

100 FIX    ; V

(0,0.01)   ; BASE

0.1        ; BETACP

$OMEGA

0 FIX ; PPV_CL

0 FIX ; PPV_V  

$SUBR ADVAN=6 TOL=9

$MODEL

COMP=(CENTRAL)

COMP=(CUMHAZ)

$PK

IF (NEWIND.LE.1) CHLAST=0

CL=THETA(1) *EXP(ETA(1))

V=THETA(2) *EXP(ETA(3))

BASHAZ=THETA(3)

BETACP=THETA(4)

$DES

DCP=A(1)/V

DADT(1)=-CL*DCP

DADT(2)=BASHAZ*EXP(BETACP*DCP)

$ERROR

CP=A(1)/V

CUMHAZ=A(2)       ; cumulative hazard

IF (DV.EQ.0) THEN ; right censored

Y=EXP(-CUMHAZ)

CHLAST=CUMHAZ ; start of interval

ELSE

CHLAST=CHLAST ; keep NM-TRAN happy

ENDIF

IF (DV.EQ.1) THEN ; exact time

HAZNOW=BASHAZ*EXP(BETACP*CP)

Y=EXP(-CUMHAZ)*HAZNOW

ENDIF

IF (DV.EQ.2) THEN ; interval censored

Y=1 – EXP(-(CUMHAZ - CHLAST))

ENDIF

 

Estimation of the parameters of any hazard 
model can be done using this kind of code. It 
uses ADVAN6 to integrate the hazard and 
obtain the cumulative hazard. This can be 
used with the hazard at the time of the event 
to calculate the likelihood of right censored, 
exact time and interval censored events. 
Note that the likelihood for an individual is the 
product of each of the contributions. This is 
important for interval censored events which 
are described by the likelihood of the right 
censoring event at the start of the interval 
(DV.EQ.0) and the interval censored event at 
the end of the interval (DV.EQ.2). 
Random effects on hazard model parameters 
(e.g. BASHAZ and BETACP) are not 
estimable with single events. 
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Time Varying Hazard (CP) 

MONOLIX 4.0
$INDIVIDUAL  ;distribution of the individual parameters

default dist=log-normal,

CL, V,  BETACP iiv=no,  BASHAZ iiv=no

$EVENT ;define the probability distribution of the time-to-event outcome

Cp = PKMODEL(CL,V) ;built-in PK model

lambda= BASHAZ*EXP(BETACP*Cp) ;the hazard function

$OBSERVATIONS distribution of the observations

Death type=event hazard=lambda

$TASKS ;tasks to perform

pop_parameters, fisher_information_matrix, graphics list=complete

$INITIAL ;initial values and parameters to estimate

POP_CL  init=10 estimate=no, 

POP_V  init=100  estimate=no, 

POP_BETACP  init=0.1 
POP_BASHAZ  init=0.01 

 

This code will be implemented in MONOLIX 
4.0. A beta version will be available and 
presented during PAGE 2011. 
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Extension to repeated events

/ / / / / / / / / / /

t0 time

x   x         x        x                       x
t1 t2 t3 t4 tend

|

1) Exact times of events

 

Repeated event observations (e.g. seizures) 
have several observation events. 
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Extension to repeated events

 

A careful calculation of the likelihood of 
repeated events is not straightforward… but is 
possible! 
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Extension to repeated events

/ / / / / / / / / / /

t0 time

x   x         x        x                       x
t1 t2 t3 t4 t5=tend

|

1) Exact times of events

ID TIME DV MDV Comment Likelihood

1 t0 . 1 Start observing -

1 t1 1 0 Exact Time Event t1 e (t0 , t1)

1 t2 1 0 Exact Time Event t2 e (t1 , t2)

1 t3 1 0 Exact Time Event t3 e (t2 , t3)

1 t4 1 0 Exact Time Event t4 e (t3 , t4)

1 t5 0 0
Right Censored 

Event
e (t4 , t5)

 

The same formulas used for exact times of 
event and right censored events can be used 
for repeated events. 
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/ / /                 / / / / / / 

Extension to repeated events

t0 time

| x |          | x |
t1 t2 t3 t4

/ / / / / / / / / / /|        x

2) Interval censored events

t5=tend
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/ / /                 / / / / / / 

Extension to repeated events

t0 time

| x |          | x |
t1 t2 t3 t4

/ / / / / / / / / / /|        x

2) Interval censored events

ID TIME DV MDV Comment Likelihood

1 t0 . 1 Start observing -

1 t1 0 0 Start Event Interval e (t0 , t1)

1 t2 2 0 End Event Interval (t1 , t2)e
(t1 , t2)

1 t3 0 0 Start Event Interval e (t2 , t3)

1 t4 2 0 End Event Interval (t3 , t4)e
(t3 , t4)

1 t5 0 0
Right Censored 

Event
e (t4 , t5)

t5=tend

 

For each interval, we have to compute 2 
likelihoods: the likelihood when the interval 
starts and the likelihood when the interval 
ends. 
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Extension to Joint Models

• Basic concept

Compute LIKELIHOOD for ANY kind of response

» Predict likelihood of an observation for a continuous 

variable (e.g. disease status)

» Predict likelihood of time of event for time to event 

data

• All types of response can be combined

» Continuous, categorical, count, time to event

 

Any kind of response, continuous or non-
continuous, can be used for estimation by 
using the joint likelihood computed for each 
observation.  
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Applications

• Continuous Response
» Standard PKPD

• Non-continuous Response
» Binary Response

– Awake or Asleep

» Ordered Categorical Response
– Neutropenic adverse event type

» Count Response
– Frequency of epileptic seizures

» Time to Event
– Death

– Dropout

• Joint Response
» Continuous plus non-continuous

 

NONMEM  (and many other parameter 
estimation procedures) uses the likelihood to 
guide the parameter search. The likelihood is 
the fundamental way to describe the 
probability of any observation given a model 
for predicting the observation. NONMEM 
shields us from the details for common PKPD 
models that use continuous response scales 
for the observation (e.g. drug concentration, 
effect on blood pressure). 
 
A variety of non-continuous responses are 
widely used to describe drug effects – 
especially clinical outcomes. By computing the 
likelihood directly for each of these kinds of 
response we can ask NONMEM to estimate 
parameters for any mixture of response types. 
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Joint Model Data

ID TIME TRT DVID DV MDV Comment

1 0 0 . . 1 Start observing

1 20 0 1 67.4 0 Biomarker

1 30 0 1 43.2 0 Biomarker

1 50 0 2 1 0 Exact Time Event

2 0 1 . . 1 Start observing

2 25 1 1 50.2 0 Biomarker

2 40 1 1 43.7 0 Biomarker

2 60 1 1 13.5 0 Biomarker

2 100 1 2 0 0 Censored Event

 

The TRT data item indicates if the subject is 
receiving active treatment (TRT=1) or not 
(TRT=0). 
DVID is used to distinguish between 
continuous value biomarker observations (e.g. 
DVID=1 for drug concentration) and event 
observations (e.g. DVID=2). 
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Example of Joint Model:

Disease Progress and Time Varying Hazard

tbatf )( )()( tfeht

)()()( ttfty

1) Continuous biomarker 2) Time to event

Statistical model:

• IIV on a and b

• Treatment effect on b
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Disease Progress and Time Varying Hazard

NONMEM

$INPUT ID TRT DVID TIME DV MDV

$ESTIM MAX=9990 NSIG=3 SIGL=9

METHOD=CONDITIONAL 

LAPLACE

$SUBR ADVAN=6 TOL=9

$MODEL

COMP=(CUMHAZ)

$PK

IF (NEWIND.LE.1) CHLAST=0 ; Initialize

;------------------------------

; Hazard

BASHAZ  = THETA(1) ; Baseline hazard

BETADP  = THETA(2) ; Disease progress effect

;------------------------------

; Symptomatic treatment effect 

EFFECT  = TRT*THETA(3)

;------------------------------

;Disease Progress

INTRI   = (THETA(4)+ EFFECT)*EXP(ETA(1)

SLOPI   =  THETA(5)* EXP(ETA(2)

$DES

DPRG    = INTRI + SLOPI*T

DADT(1) = BASHAZ*EXP(BETADP*DPRG) ; h(t)

$ERROR

CUMHAZ=A(1) ; Cumulative hazard

DISPRG=INTRI + SLOPI*TIME

;------------------------------

IF (DVID.EQ.1) THEN ; disease progress

F_FLAG = 0 ; Continuous

Y = DISPRG + ERR(1); Disease Progress

ENDIF

;------------------------------

IF (DVID.EQ.2.AND.DV.EQ.0) THEN ; right censored

F_FLAG = 1 ; Likelihood

Y = EXP(-CUMHAZ)

CHLAST=CUMHAZ ; start of interval

ELSE

CHLAST=CHLAST ; keep NM-TRAN happy

ENDIF

;------------------------------

IF (DVID.EQ.2.AND.DV.EQ.1) THEN ; exact time

F_FLAG = 1 ; Likelihood

HAZARD = BASHAZ*EXP(BETADP*DISPRG)

Y = EXP(-CUMHAZ)*HAZARD

ENDIF

;------------------------------

IF (DVID.EQ.2.AND.DV.EQ.2) THEN ; interval censored

F_FLAG = 1 ; Likelihood

Y = 1 – EXP(-(CHLAST-CUMHAZ))

ENDIF

 

This illustrates joint modelling for disease 
progress and an event. The event hazard 
depends on disease progress. 
A differential equation is used to integrate the 
hazard.  
An effect of treatment (TRT) is assumed to 
affect the intercept of the disease progress 
model which in turn influences the hazard of 
the event. 
 
It is useful to be able to save the value of the 
cumulative hazard in order to calculate the 
likelihood of an interval censored event. In this 
example DV=0 is used to indicate the start of 
the interval censored event period and the 
cumulative hazard at this time is saved in the 
CHLAST variable. 
 
The F_FLAG variable is used to tell NONMEM 
how to use the predicted Y value. F_FLAG of 
0 is the default i.e. Y is the prediction of a 
continuous variable. F_FLAG of 1 means the 
prediction is a likelihood. F_FLAG of 2 means 
the prediction is -2*ln(Likelihood). 
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Disease Progress and Time Varying Hazard

MONOLIX 4

$DATA ;information in the dataset 

ID, TRT use=cov type =cat, TIME, DVID, DV, MDV

$INDIVIDUAL  ;distribution of the individual parameters

default dist=log-normal,

INTRI, SLOPI cov=TRT,  BASHAZ iiv=no,  BETADP iiv=no

$EQUATION

DISPRG= INTRI + SLOPE*T

$EVENT

lambda=BASHAZ*EXP(BETADP*DISPRG)

$OBSERVATIONS distribution of the observations

Biomarker type=continuous pred=DISPRG err=constant,

Death type=event hazard=lambda
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Extension to count data

t0

x    xx  x     x x     x           x    x     x  x x
T1 T2T3    T4 T5  T6 T7 T8 T9 T10 T11 T12

The exact times of event
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Extension to count data

t0

x    xx  x     x x     x           x    x     x  x x

t0            t1                   t2 t3           t4              t5                   t6 t7

x    xx  x     x x     x           x    x     x  x x|       |          |       |      |         |          |          | 

T1 T2T3    T4 T5  T6 T7 T8 T9 T10 T11 T12

The exact times of event

are not observed …
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Extension to count data

t0

x    xx  x     x x     x           x    x     x  x x

t0            t1                   t2 t3           t4              t5                   t6 t7

x    xx  x     x x     x           x    x     x  x x|       |          |       |      |         |          |          | 

T1 T2T3    T4 T5  T6 T7 T8 T9 T10 T11 T12

t0            t1                   t2 t3           t4              t5                   t6 t7

|       |          |       |      |         |          |          | 

The exact times of event

are not observed …

Only the number of events in each interval is observed

1 3 2 1 0 2 3
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Extension to count data

The count data is a (non homogenous) Poisson process. 

The expected number of events in interval [a , b]  is

b

a

dttba )(),(

 

Here, an observation is the number of events 
in an interval.  
 
A careful calculation of the likelihood of this 
number of observations is not 
straightforward… but is possible! 
 
We can show that this number of observations 
is a Poisson process. The Poisson parameter 
in any interval a-b is the expected number of 
events in this interval: it is defined as the risk 
(the cumulative hazard) in this interval. 
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ID TIME DV MDV Likelihood

1 t0 . 1 -

1 t1 1 0 (t0 , t1)e
(t0 , t1)

1 t2 3 0 (t1 , t2)
3 e (t1 , t2) /3!

1 t3 2 0 (t2 , t3)
2 e (t2 , t3) /2!

1 t4 1 0 (t3 , t4)e
(t3 , t4)

1 t5 0 0 e (t4 , t5)

1 t6 2 0 (t5 , t6)
2 e (t5 , t6) /2!

1 t7 3 0 (t6 , t7)
3 e (t6 , t7) /3!

t0            t1                   t2 t3           t4              t5                   t6 t7

|       |          |       |      |         |          |          | 1 3 2 1 0 2 3

Extension to count data

 

Unlike the previous examples the DV value is 
used to indicate the number of events in the 
interval. It does not indicate the event type 
(exact time, right, interval censored). 
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Outcome Event Hazard in Parkinson‟s Disease

deprenyl(t) = 1 for on periods, 0 for 

off periods 

status(t) = predicted disease status 
as measured by UPDRS or its 
subscales at time t

Other Explanatory Factors: (Xn)

•Levodopa(t), baseline motor 
subtypes status

•Age, sex, smoking status at study 
entry

Hazard Model with Explanatory Variables

h(t) = h0(t) ·exp( deprenyl·deprenyl(t) + status·status(t) + …+ nXn)

 

The severity of Parkinson‟s disease is usually 
assessed by the Unified Parkinson‟s disease 
response scale (UPDRS). The UPDRS score 
increases with time as the disease 
progresses. The disease status can be 
described by a model for disease progression 
(natural history) and the effects of treatment 
e.g. the use of levodopa (the mainstay of 
treatment) with or without deprenyl (a mono-
amine oxidase inhibitor commonly used as an 
adjunctive treatment)  
The hazard of a clinical outcome event e.g. 
death, can be described by a baseline hazard, 
h0(t), and explanatory factors such as drug 
treatment and the time course of disease 
status. Other factors (age, sex, smoking, etc) 
are easily included in this kind of model. 
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Evaluation of Hazard Models

visual predictive check

Death Disability

DepressionCognitive Impairment

 

The change of disease status, reflected by the 
time course of UPDRS, is the most important 
factor determining the hazard of clinical 
outcome events in Parkinson‟s disease. The 
different shapes of the survival function for 
death, disability, cognitive impairment and 
depression reflect different contributions of 
disease status to the probability of not having 
had the event as time passes. 
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Putting Time Back 

into The Picture

“Science is either

stamp collecting or physics”
Ernest Rutherford

Stamp

Collecting
PhysicsModels

Biomarker

+

Time

Outcome
Hazard

+

Time
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Backup Slides
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Constant hazard (t)

tetTP )(

T is a random variable with an exponential distribution:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (h)

P
( 

T
 >

 t
 )

 

 

 = 0.5 h
-1

 = 1 h
-1

 = 2 h
-1

 

The survival function of a constant hazard 
decreases exponentially to 0. 
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Constant hazard (t)

teTtTPaTatTP )0()(

Important property: this distribution is memoryless

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

P( T > t ) P( T > t | T > 1) P( T > t | T > 3)

time (h)

 

Constant hazard makes the very strong 
assumption of memoryless.  
The modeller should be aware of this strong 
assumption at the time to select a hazard 
function. 
 
Consider for example that your event is the 
first passing of the viral load (HIV, HCV,…) 
under a given threshold (e.g. LOQ). Here, t_0 
is the time when the active treatment starts. 
We assume that the initial viral load at t_0 is 
above this threshold. Then : 
  - the hazard is 0 at t_0 and increases with 
time 
  - if you know that you are still above the 
threshold after 6 months for instance, then this 
information will “modify” the distribution of 
your event time :  
      P(T > t+a | T>a)  > P(T>t | T>0) 
In other words, you are more likely to be a no 
responder and the probability to reach the 
threshold decreases 
 
This is one of the many examples where a 
constant hazard is a very poor choice and 
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when alternative models (Weibull for instance) 
should be considered. 
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Parametric Regression

In Standard Packages

• Estimation of hazard parameters is done after 
transformation e.g. ln(T)

• Explanatory variable model is then linear regression e.g. for 
Weibull

ipipiii xxx)(T ...ln 2211  

Note that covariates (x1…xp) are usually assumed to be time invariant

Standard survival analysis is equivalent to non-compartmental PK. 

It is useful for description but ignores time variation.

ipipiii xxxT ...)ln(
1

)ln( 2211

Or more generally

 

When covariates change with time then the 
hazard must be integrated in a piecewise 
fashion. This is exactly analogous to PK 
problems. If clearance changes from one time 
period to the next then the concentration 
prediction must be done piecewise (NONMEM 
describes this as „advancing the solution‟) 
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Distribution of Survival Times

Michaelis-Menten Elimination

hazard(t))Survival(tPDF(t)

thazard(t)d

e)Survival(t

b
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A useful view of survival is to look at the 
probability density function for the survival 
times. 
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How can the effect of treatment 

Rx(t)  be described?

h(t) = f(sex, race, age(t), Rx(t),…)

Rx(t)

 

Standard survival analysis can include varying 
age implicitly. Adding time-varying covariates 
for survival analysis is harder to do because of 
the need to integrate the hazard. 
Drug treatments will often change with time 
and if expressed in terms of drug 
concentration the hazard could change in 
proportion to concentration after every dose. 
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Survivor Function
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An example of how to simulate the time 
course of survivor function, cumulative hazard 
and pdf with a continuously time varying 
hazard using Berkeley Madonna code. 
 
METHOD RK4 
 
STARTTIME = 0 
STOPTIME=10 
 
DT = 0.02 
 
beta0=0.1 
betaStatus=0.01 
S0=20 
status=S0+12*time 
 
hazpla=beta0*exp(betaStatus*S0) 
 
haztrt=beta0*exp(betaStatus*status) 
 
 
init(cumpla)=0 
d/dt(cumpla)=hazpla 
survpla=exp(-cumpla) 
 
init(cumtrt)=0 
d/dt(cumtrt)=haztrt 
survtrt=exp(-cumtrt) 
 
 
pdfpla=survpla*hazpla 
pdftrt=survtrt*haztrt 
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Cumulative Hazard and

Relative Risk
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Probability Density Function
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Hazard models link disease progress and 

clinical outcome probability

t
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etTtS 0
)(

)Pr()(
h(t)= 0

h(t)= 0·exp( status·status(t))
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Likelihoods for Survival

http://en.wikipedia.org/wiki/Survival_analysis

= S(Ti|θ) * h(Ti)

 

An alternative way of describing the 
likelihoods in terms of the survivor function 
and hazard function alone. 
 
 

 


