# Model-based Analysis of the GLP-1 Response Following an Oral **Glucose Tolerance Test (OGTT)**

# **Objective**

To gain further insights into the pathophysiology of Type 2 diabetes, by providing description of GLP-1 the response following an oral glucose administration.

# **Table 1** Distribution of subjects and baseline values

| Subjects                                            | Normal       | IFG-IGT-T2D  | Total        |
|-----------------------------------------------------|--------------|--------------|--------------|
| Number                                              | 117          | 18           | 135          |
| Age [yr]                                            | 41.77 (11.4) | 45.56 (12.7) | 42.27 (11.6) |
| Fasting plasma glucose [mg·dL <sup>-1</sup> ]       | 93.02 (8.1)  | 109.82 (13)  | 95.26 (10.5) |
| Fasting plasma insulin [pmol·L <sup>-1</sup> ]      | 5.43 (3.1)   | 11.66 (8.4)  | 6.26 (4.6)   |
| Fasting plasma GLP-1(total) [pmol·L <sup>-1</sup> ] | 5.35 (3.3)   | 4.61 (2.6)   | 5.26 (3.2)   |
|                                                     |              |              |              |

| Authors                                                                                              |                                                                                               |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| <b>1. JB Møller</b><br>Novo Nordisk A/S<br>Vandtårnsvej 114<br>Søborg, Denmark                       | <b>5. JJ Holst</b><br>Department of Medical<br>Physiology<br>Panum Institute<br>University of |  |
| <b>2. WJ Jusko</b><br>Department of<br>pharmaceutical<br>sciences, State univ.<br>of NY Buffalo, USA | Copenhagen<br>6. RV Overgaard<br>Novo Nordisk A/S<br>Vandtårnsvej 114<br>Søborg, Denmark      |  |
| <b>3. T Hansen</b><br>Hagedorn Research<br>Institute                                                 | <b>7. H Madsen</b><br>Department of                                                           |  |

Department of Informatics and Mathematical Modelling, DTU Lyngby, Denmark

8. SH Ingwersen Novo Nordisk A/S Vandtårnsvej 114 Søborg, Denmark

GLP1 stimulation -  $S_4$  [mg<sup>-1</sup>]

13.54(13.23) | 10.76(8.7) |13.16(12.7) |

## Background

- GLP-1 is known as an insulino-tropic hormone, meaning that the insulin to elevated response glucose levels is increased in the presence of this hormone [1].
- The GLP-1 response is increased in the presence of nutrients in the gastrointestinal (GI) tract and thus also following intake of oral glucose.
- not clear how ĪS of dynamics such a is response changed pathological under conditions eg. in subjects with impaired glucose tolerance.
- Compared to a standard analysis (AUC and C<sub>max</sub>), a

**Table 1**: Mean (SD) of demographic factors and baseline characteristics. S<sub>4</sub> presents magnitude on slow GLP-1 response.



## **Results and conclusions**

Gentofte, Denmark

Hagedorn Research

Gentofte, Denmark

4. O Pedersen

Institute

- The final indirect-response model obtained for GLP-1 production following an oral glucose tolerance test included two stimulation zero-order components on a production rate. (Fig. 1)
- The fast stimulation was estimated to arrive prior to glucose absorption, suggesting a neuroendocrine loop, where nutrients in stimulates GLP-1 doudenum secretion from L-cells in the lower part of GI (ileum). (Fig. 3)

#### Conclusions

A semi-mechanistic population model was successfully developed and

model PK/PD of the will provide response information more regarding dynamics and can easily be used to detect the impact of demographic factors on these.

#### **Methods**

- In order to obtain such descriptive indices, a semi-mechanistic model for the GLP-1 response was built using glucose, insulin, and GLP-1 data [2].
- Initially, the glucose absorption rate was only estimated using insulin glucose and [pmol/L] The concentrations. estimated glucose absorption rate was used as input to the GLP-1

Figure 1 : (A) Indirect response model relating glucose and insulin dynamics applied for estimation of glucose absorption rate, (B) GLP-1 model using glucose absorption rate as input. Triangles present delay(transit) compartments.

**Figure 2 Diagnostics** 



applied to describe total **GLP-1** concentrations over time observed after an OGTT

The secretion of GLP-1 appears to be stimulated by glucose in two ways: by a fast mechanism driven by glucose dose in the GI and by a slower mechanism driven by glucose absorption rate.

The model provides a good basis to study influence of demographic factors on individual GLP-1 secretion capabilities.

#### References

[1] Holst JJ 2007. The Physiology of Glucagon-like Peptide 1.



Figure 2: Black = Individual observations, **Blue** = Mean observations, **Red** = Population prediction.

**Figure 3** : S<sub>1</sub>=Fast stimulation component,  $A_3$ =Glucose absorption rate,  $S_2$ =Slow stimulation component.

**Figure 3 Stimulation** 

#### Physiol Rev 87(4):1409-1439.

[2] Hansen T, Drivsholm T, Urhammer SA, Palacios RT, Vølund A, Borch-Johnsen K, Pedersen O 2007. The BIGTT Test. Diabetes Care 30(2):257-262.

[3] Jonas B. Møller, William J. Jusko, Wei Gao, Torben Hansen, Oluf Pedersen, Jens J. Holst, Rune V. Overgaard, Henrik Madsen, Steen H. Ingwersen. Mechanism-based population modelling for assessment of L-cell function based on total GLP-1 response following an oral glucose tolerance test. Submitted to J.PK.PD

