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Introduction

References

Key findings

Problem: BLOQ data often encountered in PopPK 

modeling. Several methods have been proposed

to deal with such data:

• discarding BLOQ data (“DISCARD”)

• replace with LLOQ/2                     (“LLOQ/2”)

• likelihood-based methods.(1-3) (“M3”)

Hypothesis: using actual concentration data, 

extrapolated below the LLOQ (“BLOQ” method) 

has superior performance over established

methods, and decreases bias and imprecision of 

parameter estimates. 

M&S Study:

1. Construct credible residual error model

2. Simulate datasets for several PK models

3. Re-estimate using BLOQ methods

4. Evaluate performance

• When fraction BLOQ is low (<10%) all methods

showed similar performance

• incorporation of BLQ concentration data showed

superior performance in terms of bias and 

precision over established BLOQ methods. 

The use of BLQ data as a continuous data source is a 

valid approach in PopPK modelling.
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1.  Residual error (RE model)

Method: 

• RE  model was constructed and fitted to results

from QA reports from our own laboratory / 

analyses published in literature. (solid line)

• Another model was defined which described a 

‘worst-case' analytical method that just complied

with FDA standards. (dashed line)

• RE model combined with a proportional error

model (20%) to account for model misspecification:

Results:
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2. Simulations

4. Evaluation of performance

Automation, simulation and plotting was performed

using R and Perl. Re-estimation analyses were

performed in NONMEM VI/VII

Simulations:

• n = 25 patients, n = 100 simulations

• Various levels of BLQ censoring (10%, 20% and 40%)

• PK models: oral, iv;  1,2,3-compartmental

 LOQ Minimization successful* (%) Covariance step successful (%) 

PK 

model 
censoring Discard LOQ/2 M3 

All 

data 
Discard LOQ/2 M3 

All 

data 

10 % 100 98 53 100 100 98 34 100 

20 % 100 99 43 100 100 99 15 100 
I.v., 1 

cmp. 
40 % 96 100 25 100 94 100 7 100 

10 % 68 87 13 86 28 40 4 38 

20 % 65 84 18 88 24 50 2 48 
I.v., 2 

cmp. 
40 % 64 79 26 82 11 50 5 53 

10 % 93 96 46 93 91 94 20 91 

20 % 96 97 34 98 95 93 14 97 
Oral, 1 

cmp 
40 % 99 98 21 100 98 98 1 98 

10 % 100 100 62 100 100 100 32 100 

20 % 100 96 54 100 100 95 16 100 

Oral, 1 

cmp 

NM7 40 % 99 97 54 98 98 93 18 98 

 

Table 1. NONMEM minization performance for various methods

Figures 2a-e. Performance of LLOQ methods for oral one-comp. 

linear model, RMSE is shown in the bottom of each plot. 

Significance of systematic bias (p < 0.05) is shown by colouring of 

the box: dark-blue indicates bias.

Figure 1. Inter-day variation (CV%) plotted versus concentration relative 

to LLOQ. Black dots represent data from validations performed in our 

own labs, open circles represent data from published validation reports.

Results:

• Generally, `Discard’ method showed largest bias.

• At 10% BLOQ, all methods showed similar performance

• For all models, `all data’ methods showed lowest RMSE,

especially apparent at higher % BLOQ. 

• Only with ‘worst-case’ res. error model, and at 40% 

BLOQ, did M3 show lower RMSE than ‘All data’

• `M3’ method showed low % of successful minimizations /

covariance steps (table 1)

• `M3’ method seemed very sensitive to initial estimates

• ‘M3LOD’ did not perform better than `all data’ method

Re-estimate using all four methods, use same PK model 

used as in simulations.

Additional evaluations:

• ‘worst-case’ residual error model

• NONMEM7 instead of NONMEM6

• SAEM estimation method

• the use of another approach ‘M3LOD' in which the M3 

method was only used for points <LOD. 
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