

The Netherlands Cancer Institute Antoni van Leeuwenhoek Hospital

Incorporation of extrapolated concentration data below the limit of quantification in population PK analyses

RJ Keizer^{1,2}, RS Jansen^{1,2}, H Rosing^{1,2}, JH Beijnen,^{1,2,3}, JHM Schellens^{2,3}, ADR Huitema^{1,2}

- 1 Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute / Slotervaart Hospital, Amsterdam, NL
- 2 Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, NL
- 3 Division of Drug Toxicology, Section of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University

Introduction

Problem: BLOQ data often encountered in PopPK modeling. Several methods have been proposed to deal with such data:

("DISCARD")

("LLOQ/2")

slotervaartziekenhuis

- discarding BLOQ data
- replace with LLOQ/2
- likelihood-based methods.⁽¹⁻³⁾ ("M3")

Hypothesis: using actual concentration data, **extrapolated** below the LLOQ ("**BLOQ**" method) has superior performance over established methods, and decreases bias and imprecision of parameter estimates.

2. Simulations

Automation, simulation and plotting was performed using R and Perl. Re-estimation analyses were performed in NONMEM VI/VII

Simulations:

- *n* = 25 patients, *n* = 100 simulations
- Various levels of BLQ censoring (10%, 20% and 40%)
- PK models: oral, iv; 1,2,3-compartmental

3. Model re-estimations

Re-estimate using all four methods, use same PK model used as in simulations.

Additional evaluations:

- 'worst-case' residual error model
- NONMEM7 instead of NONMEM6
- SAEM estimation method
- the use of another approach 'M3_{LOD}' in which the M3 method was only used for points <LOD.

Key findings

- When fraction BLOQ is low (<10%) all methods showed similar performance
- incorporation of BLQ concentration data showed superior performance in terms of bias and precision over established BLOQ methods.

The use of BLQ data as a continuous data source is a valid approach in PopPK modelling.

References

- 1. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001 Okt;28(5):481-504.
- 2. Ahn J, Karlsson M, Dunne A, Ludden T. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. Journal of Pharmacokinetics and Pharmacodynamics. 2008 Aug 7;
- 3. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009 Jun;11(2):371-380.

M&S Study:

4. Evaluation of performance

- 1. Construct credible residual error model
- 2. Simulate datasets for several PK models
- 3. Re-estimate using BLOQ methods
- 4. Evaluate performance

1. Residual error (RE model)

Method:

- RE model was constructed and fitted to results from QA reports from our own laboratory / analyses published in literature. (solid line)
- Another model was defined which described a 'worst-case' analytical method that just complied with FDA standards. (dashed line)
- RE model combined with a proportional error model (20%) to account for model misspecification:

 $y = (\hat{y} \cdot (1 + a \cdot \varepsilon_1) + b \cdot \varepsilon_2) \cdot (1 + 0.2 \cdot \varepsilon_3)$

Results:

- Generally, `Discard' method showed largest bias.
- At 10% BLOQ, all methods showed similar performance
- For all models, `all data' methods showed lowest RMSE, especially apparent at higher % BLOQ.
- Only with 'worst-case' res. error model, and at 40% BLOQ, did M3 show lower RMSE than 'All data'
- `M3' method showed low % of successful minimizations / covariance steps (table 1)
- `M3' method seemed very sensitive to initial estimates
- 'M3_{LOD}' did not perform better than `all data' method

Results:

concentration relative to LLOQ

Figure 1. Inter-day variation (CV%) plotted versus concentration relative to LLOQ. Black dots represent data from validations performed in our own labs, open circles represent data from published validation reports.

Figures 2a-e. Performance of LLOQ methods for **oral one-comp**. *linear model*, *RMSE* is shown in the bottom of each plot. Significance of systematic bias (p < 0.05) is shown by colouring of the box: dark-blue indicates bias.

Table 1. NONMEM minization performance for various methods

	LOQ	Minimization successful* (%)				Covariance step successful (%)			
PK model	censoring	Discard	LOQ/2	M3	All data	Discard	LOQ/2	M3	All data
l.v. <i>,</i> 1 cmp.	10 %	100	98	53	100	100	98	34	100
	20 %	100	99	43	100	100	99	15	100
	40 %	96	100	25	100	94	100	7	100
I.v. <i>,</i> 2 cmp.	10 %	68	87	13	86	28	40	4	38
	20 %	65	84	18	88	24	50	2	48
	40 %	64	79	26	82	11	50	5	53
Oral, 1 cmp	10 %	93	96	46	93	91	94	20	91
	20 %	96	97	34	98	95	93	14	97
	40 %	99	98	21	100	98	98	1	98
Oral, 1 cmp NM7	10 %	100	100	62	100	100	100	32	100
	20 %	100	96	54	100	100	95	16	100
	40 %	99	97	54	98	98	93	18	98