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Bridging pharmacometrics and multi-scale systems models

 Has resulted in models that are often not suitable for parameter estimation.

— Time consuming and numerically unstable

 Proper lumping is one of the ways to reduce the order of such complicated models.

— A special case of lumping that merges some of the states to only one state

— Reduced states after proper lumping are
able to retain the physiological meaning as
in the original system

— Simplified models can be directly used as a
structural model for data-driven analyses
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In PAGE 2013 (5 years ago)...

Nonlinear 62-state
system

Simplification of a multi-scale
systems coagulation model with an application
to modelling PKPD data

Modelling venom-fibrinogen data

* Use of a full population approach to analyse the data
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Difficulty with lumping coagulation model in 2013

 Model structure was able to be visualized. Venom dose -
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— The model (equations) had to be reconstructed manually

— Parameter values and initial values of the reduced model had to be heuristically determined by
trial and error

e Therefore the lumping process could not be automated.
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Proper lumping and linear vs nonlinear

Linear system Nonlinear system

Lumping formula gives Lumping formula does not give
equations and parameter values  equations and parameter values
of the reduced model of the reduced model

; Adapted from https://www.page-meeting.org/pdf_assets/2343-PAGE_Oral_Gulati_2013_vFinal.pdf UNIVERSITY
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Aims

e to systematically simplify a nonlinear systems model

take
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Nonlinear 28-state system
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— Use a bone biology model as an illustrative example

e to assess the performance of the simplified model by predicting improvement in long-
term bone mineral density (BMD) responses from denosumab, a RANKL inhibitor

Extrapolation from short/middle-term data to long-term responses

_ Peterson MC et al, Bone 2010; 46:49-63 UNIVERSITY
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Systematic simplification of systems models

Original nonlinear systems model

! ‘ 1. Linearise using inductive approximation

Hasegawa et al, JPKPD 2018; 45:35-47
Linearised systems model

! ! 2. Automatic proper lumping using a composite criterion

Hasegawa et al, AAPSJ 2017; 20:2

Reduced model
3.  Finalisation of the reduced model
@ e Unlinearise the model
e [Identifiability analyses

Final reduced model
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Linearise the model using inductive (iterative) approximation

Original nonlinear

D _ £, p)+ A, p)y
dt _— -
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“Unknown” before solving the ODE

Linearised via n-times iteration

dy[n]
dt

= f(t,y" )+ A,y )yl
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“Known” quantity (just a number at any t)
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Example of linearisation using Michaelis-Menten process

PK model with Michaelis-Menten elimination
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Linearisation results in bone biology model

after dosing denosumab every 6 months (Q6W)
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2. Automatic proper lumping using a composite criterion

e The criterion (CC) consists of opposing two indices.

N
j— . — . T
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Penalty for complexity S .
C -
9 CcC
2 (criterion)
a: weighting factor o | S

m: number of states in lumped model (x-axis) Best number of states

Number of states in lumped model

Hasegawa C et al, AAPSJ 2017; 20:2 UNIVERSITY
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Lumping results in bone biology model

e 8-state model provided the smallest criterion value
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3. Finalisation of the reduced model

e Unlinearise the model (for unlumped states)

— to transform back to the original form R

X X
L1 (RANK-related L2 (RANKL-

state) y'S related state)
(19 states lumped) (3 states lumped)

4 >
complex

e |dentifiability analyses

— to identify estimable parameters using an information
approach (popt_i, MATLAB)

Shivva V et al., CPT Pharmacomet Syst Pharmacol. 2013; 2:e49

v : identifiable
X : unidentifiable
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Assess the performance of the final reduced model

by predicting improvement in long-term BMD responses

Data from denosumab phase 2 study

Miller PD et al., Bone. 2008; 43:222-9.

A. Lumbar Spine

Percent Change
(LS Mean + SE)
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Fitting with 1-year training dataset

A. Lumbar Spine

e Reduced model

e Two Empirical models (reference) qéng
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Extrapolation beyond 1 year

A. Lumbar Spine
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Fitting results for 1 year

BMD %CFB

BMD %CFB

14 mg
15 1 [¢] Observed
Reduced
— — D'
T
5
[e) ——————————
0 [}
-5
T T T T T
0 3 6 9 12
Time (months)
100 mg
15 o Observed
Reduced
—— — Direct response
1004 Turnover
o
5 n /"
0 -
-5 -
T T T T T
0 3 6 9 12

Time (months)

BMD % CFB

BMD %CFB

60 mg
15 o Observed
Reduced
— — D‘
0] T
5 Spp— _90
/’d’/
0
-5
T T T T T
0 3 6 9 12
Time (months)
210 mg
154 o} Observed
Reduced
—— — Direct
T Drect pore
) //‘o
0
-5 -
T T T T T
0 3 6 9 12

Time (months)

Similar results
from all models
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Extrapolation results beyond 1 year
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Conclusions

e 5 yearsago we could lump but could not automatically lump or extract the model.

* |n this work we illustrated that the combination of linearisation and lumping can be
automated.

e The systematic lumping process was illustrated using a bone biology model.

— The process is automatic, and can be applied directly to other multiscale models for developing a
mechanism-based structural model for data-driven analyses.

— Other groups are also working on model simplification  snowden s et al,, PAGE 27 (2018) Abstr 8647.

e The reduced model adequately described an increase in responses after long-term
dosing which was not able to be emulated by empirical/semi-mechanistic models.
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