

Design for cost minimisation of a phase II clinical study

Lee Kien Foo Stephen Duffull

Otago Pharmacometrics Group, School of Pharmacy, University of Otago ~ www.pharmacometrics.co.nz

Introduction

- Designs for PKPD studies mainly focus on improving the precision of parameter estimation
 - By optimising dose, dosing regimen and/or sampling schedule
- Upper boundary of the design space \rightarrow most precise estimates
- A cost penalty has been incorporated in optimal design methods but as a design constraint ^[1-4]
 - Studies are penalised for number of patients and blood samples but not for study failure
- An empirical value of power is usually chosen *a priori*, often 80%

[1] Mentré M et al. *Biometrika*. 1997;84:429–442.

[2] Retout S et al. *Communication in Statistics*. 2009;8:3351–3368.

[3] Gagnon R et al. Journal of Biopharmaceutical Statistics. 2005;15:143–163.

[4] Bazzoli C et al. www.page-meeting.org/?abstract=1710.

Phase II clinical studies

- Drug tested in target patients for the first time
- Explore dose effect relationship
- Population PK explored in phase I study of healthy volunteers, and then applied to design a phase II study
- PK of healthy volunteers (prior) = PK of patients (target)?

The balance between cost and failure

- If we don't consider cost then the upper boundary of ethical constraints provides the best design
- Penalising cost reduces precision and increases failure
- Setting power *a priori* is arbitrary, what is the best power?
- What does power mean from a cost perspective?
- Does cost \equiv power?

Aims

- To determine if an optimal design exists that
 - Naturally balances the cost of a clinical study with the probability of study success
 - Without arbitrary constraints on the design space
 - Without the need to define power *a priori*
- To determine the influence of different cost structures on the design

Design variables

 $\boldsymbol{\xi} = \{Np, Ns, DDD, Ts\}$

Np = number of patients

Ns = number of samples per patient

DDD = defined daily dose

Ts = blood sampling times conditioned on *Ns*

Expenditure

• For each patient:

Expenditure for samples = sampling days $\times NS \times CS$

Expenditure for drug = study duration (days) \times DDD \times Cd

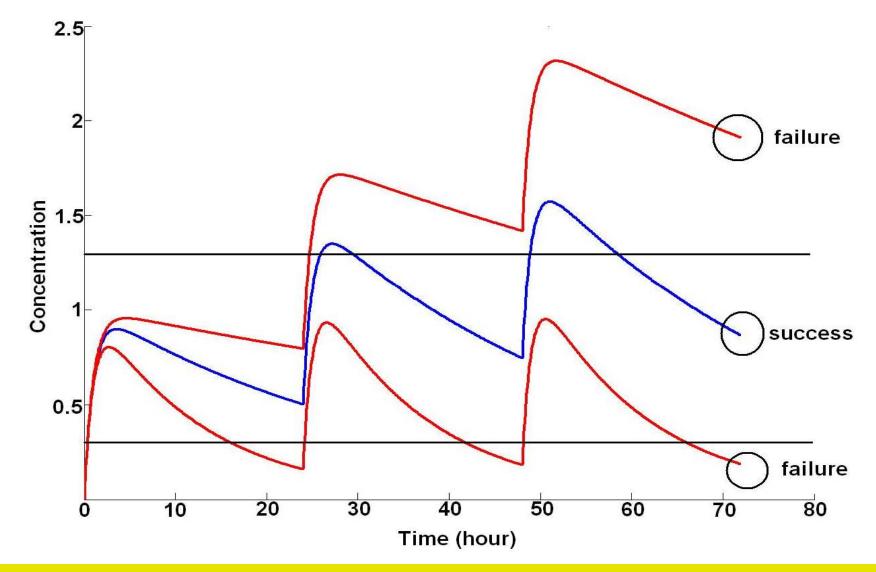
Expenditure for pre-investigation, housing, food, $\dots = Cp$

• Expenditure of a study:

 $X(\xi) =$ $[Np \times (Cp + Expenditure for samples + Expenditure for drug)]$

Cost of a study

 $Cost = \begin{cases} X(\xi) ; & study successful \\ X(\xi) + X(\xi_0) + X(TP) ; study failed \end{cases}$


 $X(\xi_0)$: cost to redo the study using a previous empirical (and more intensive) design

X(TP): cost for time penalty

Hypothetical example

- Phase II clinical study for a drug
- All patients received the same dose of drug given orally
- Dosing schedule = 3 doses at 24 hours dose interval
- Therapeutic range of the trough concentration for the 3rd dose is defined based on prior biomarker data [0.3 unit/L, 1.3 unit/L]
- The study is successful if ≥ 60% of patients have trough concentration within the range

Success criterion for a patient

Otago Pharmacometrics Group, School of Pharmacy, University of Otago ~ www.pharmacometrics.co.nz

The Model

$$C_{ij} = f\left(Ka_{i}, CL_{i}, V_{i}, t_{ij}, DDD\right) \times e^{\left(\varepsilon_{p_{ij}}\right)} + \varepsilon_{a_{ij}}$$

$$f(Ka_{i,k_{i}},t_{ij},DDD) = \frac{DDD \times Ka_{i}}{V_{i} \times (Ka_{i}-k_{i})} \times \left(\frac{\left[e^{\left(-k_{i} \times t_{ij}\right)}\right]\left[1-e^{\left(-dn \times k_{i} \times di\right)}\right]}{1-e^{\left(-k_{i} \times di\right)}} - \frac{\left[e^{\left(-Ka_{i} \times t_{ij}\right)}\right]\left[1-e^{\left(-dn \times Ka_{i} \times di\right)}\right]}{1-e^{\left(-Ka_{i} \times di\right)}}\right)$$

$$k_{i} = \frac{CL_{i}}{V_{i}} \qquad \mathbf{\theta}_{i} = (Ka_{i} \quad CL_{i} \quad V_{i})^{\mathrm{T}}$$
$$\log(\mathbf{\theta}_{i}) \sim N(\log \overline{\mathbf{\theta}}, \mathbf{\Omega}) \qquad \varepsilon_{p_{ij}} \stackrel{iid}{\sim} N(0, \sigma_{p}^{2}) \qquad \varepsilon_{a_{ij}} \stackrel{iid}{\sim} N(0, \sigma_{a}^{2})$$

Describing Uncertainty

- Population PK parameters: $\Phi_0 = (\overline{\Theta}, \Omega, \sigma^2)$
- Hyperprior distribution

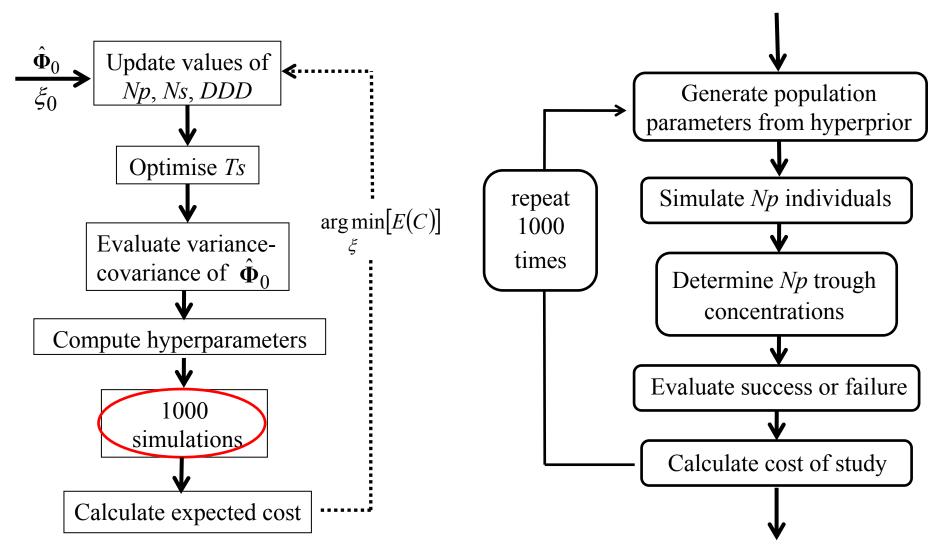
 $\overline{\mathbf{\theta}} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ $\mathbf{\Omega} \sim IW(\mathbf{R}, \nu)$ $\sigma^2 \sim IG(a, b)$

- Hyperprior parameter: $\mathbf{H} = \{ \boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{R}, \boldsymbol{\nu}, \boldsymbol{a}, \boldsymbol{b} \}$
- If the point estimates and the variance-covariance of the population PK parameters are available, the values of hyperparameters can be computed^[1]

Simulation Study

• Population PK estimates from phase I study:

$$\hat{\overline{\mathbf{\theta}}} = (1, \quad 0.03, \quad 1)^{\mathrm{T}} \qquad \hat{\mathbf{\Omega}} = \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \end{bmatrix} \qquad \hat{\sigma}_{p}^{2} = 0.1 \qquad \hat{\sigma}_{a}^{2} = 0.05$$


• Hyperprior distribution

$$\overline{\mathbf{\theta}} \sim N(\mathbf{\mu}, \mathbf{\Sigma}) \qquad \mathbf{\Omega} \sim IW(\mathbf{R}, \mathbf{v}) \qquad \sigma_p^2 \sim IG(a, b) \qquad \sigma_a^2 = 0.05$$

Assumptions

- We consider that ethical constraints and recruitment issues can be handled by penalising the cost per blood sample
- There was one elementary design for the study, which means one sampling schedule for all patients
- A failed study would be repeated with an empirical design

Procedure

Otago Pharmacometrics Group, School of Pharmacy, University of Otago ~ www.pharmacometrics.co.nz

Simulation Study

	Unit cost	Empirical design	Upper bound
Patient	\$10000	70	100
Blood sample	\$100 \$500 \$1000	8	35
DDD	\$10	1	6

Result

	Cs	Np	Ns	DDD	\$	Power
No time penalty	100	33	18	3	582,520	0.918
	500	46	8	3	1,185,771	0.890
	1000	58	6	3	1,884,100	0.893
With time penalty	100	38	17	3	618,980	0.968
	500	53	8	3	1,279,500	0.953
	1000	63	6	3	2,012,600	0.932

Power

- Design for cost minimisation naturally results in study with appropriate power
- High cost ≠ high power & high power ≠ high cost even when the design is optimised
- Setting power *a priori* did not ensure the best design
- Cost minimisation design is a more sensible way to design study

Conclusions

- There exists an optimal design that naturally balances the cost of a clinical study with the probability of study success
 - Without arbitrary constraints on the design space
 - Without the need to define the power *a priori*
- The design changed with different cost structure

Acknowledgements

- School of Pharmacy
- University of Otago (PhD scholarship)
- PAGE-Pharsight student sponsorship
- Otago pharmacometrics group members