

Handling data below the quantification limit in viral kinetic modelling for model evaluation and prediction of treatment outcome

Thi Huyen Tram NGUYEN⁽¹⁾, Jérémie GUEDJ⁽¹⁾ Jing YU ⁽²⁾, Micha LEVI⁽³⁾ Emmanuelle COMETS⁽¹⁾, France MENTRE⁽¹⁾

- (1) IAME, INSERM UMR 1137, University Paris Diderot, Sorbonne Paris Cité
- (2) Novartis Institutes for BioMedical Research, Inc, Cambridge
- (3) Novartis Pharmaceutical Corp., East Hanover

Outline

- Context
- Objectives

3 projects

- Methods
- Results
- Conclusions & Perspectives

Context: Viral kinetic (VK) models

VK models

- Better understanding of viral lifecycle (HCV, HIV) and mechanism of action of antiviral agents^(1,2)
- Improvement of the understanding of viral kinetics by including pharmacokinetic (PK) information ^(3,4)

New effective anti-HCV treatments

- Direct acting antivirals: telaprevir, boceprevir, sofosbuvir, daclatasvir,...
- Host-targeting antivirals: alisporivir (Novartis)
- Viral loads below the quantification limit (BQL) are indicators of treatment effectiveness
- \Rightarrow BQL data very frequent with new effective treatments

Context: Handling of BQL data

Estimation of population parameters

- Omitting BQL data often result in biased estimates⁽¹⁻³⁾
- Likelihood-based approaches (SAEM, M3 method in NONMEM, etc.) provide better parameter estimates ⁽¹⁻³⁾

Model evaluation

- Most evaluation methods omit or impute BQL data at the limit of quantification (LOQ) even though they were handled in estimation step
- \Rightarrow Trends in diagnostic graphs
- ⇒ Confuse model evaluation/selection
- Individual parameter estimation
 - Impact of handling BQL data is not yet studied

Objectives

- Extend prediction discrepancies (pd) and normalized prediction distribution errors (npde), to handle BQL data
- Build a PK-VK model for virologic response to alisporivir (ALV) and pegylated interferon (peg-IFN). Evaluate this PK-VK model with these metrics
- Evaluate the impact of BQL data, design and a priori information on individual parameter estimates and prediction of treatment outcome

Project I

Extend prediction discrepancies (pd) and normalized prediction distribution errors (npde) to take into account BQL data

J Pharmacokinet Pharmacodyn (2012) 39:499–518 DOI 10.1007/s10928-012-9264-2

ORIGINAL PAPER

Extension of NPDE for evaluation of nonlinear mixed effect models in presence of data below the quantification limit with applications to HIV dynamic model

Thi Huyen Tram Nguyen · Emmanuelle Comets · France Mentré

6

Methods: pd and npde for observed data

- Cumulative distribution function predicted by the model
- Obtained by K Monte Carlo simulation

$$\mathbf{P}_{ij} = \mathbf{F}_{ij}(\mathbf{y}_{ij})^{(1)}$$

npde: normalized decorrelated pd⁽²⁾

If the model is true (hypothesis H₀): pd_{ij} ~ U[0,1] npde_{ij} ~ N(0,1)

Methods: pd and npde for BQL data

- pd_{ij} for a BQL observation y_{ij}
 - F_{ij}(LOQ): probability of being under LOQ
 - pd_{ij} is randomly chosen in U[0,F_{ij}(LOQ)]
- npde_{ij} for a BQL observation y_{ij}
 - Impute observed and simulated BQL data
 - Calculate npde_{ij} from imputed data

Methods: Simulation study

- Results under H_0 are presented
- Model: inspired from a model built for real data⁽¹⁾
 - Observed dataset
 - Monte Carlo samples to approximate F_{ij}
- 2 censoring levels: LOQ = 0 (no censoring), 50 copies/mL
- Evaluation of new metrics
 - Graphical evaluation
 - Type I error of the global test⁽¹⁾ to test if npde ~ N(0, I)

(Powers also evaluated but results not shown)

9

► Type I errors*

No censoring	LOQ = 50 copies/mL		
5.4	Omit BQL data	46.9	
	New approach	6.2	

*Type I errors evaluated on 1000 datasets

Prediction interval for 5%: [3.6 – 6.4]

New pd, npde and other graphical improvements were implemented in the package npde 2.0 for R

www.npde.biostat.fr

cran.r-project.org/web/packages/npde

Package 'npde'

August 29, 2013

Type Package

Title Normalised prediction distribution errors for nonlinear mixed-effect models

Version 2.0

Date 2012-08-15

Author Emmanuelle Comets, Karl Brendel, Thi Huyen Tram Nguyen, France Mentre.

Project 2

PK-VK model to characterize virologic response to alisporivir (ALV) and pegylated interferon (peg-IFN)

A pharmacokinetic – viral kinetic model describes the effect of alisporivir monotherapy or in combination with peg-IFN on hepatitis C virologic response

Thi Huyen Tram Nguyen^{1,2}, France Mentré^{1,2}, Micha Levi³, Jing Yu⁴, Jérémie Guedj^{1,2}

(Submitted)

| | 3

Methods

Alisporivir (Novartis):

• Cyclophillin inhibitor

5 treatment arms

 Currently in phase 3 Study DEB025-A2203⁽¹⁾ 	ALV Dose (mg)	Peg-IFN (µg)
Phase 2a clinical study: 4-week treatment & 3 wook wash out	200	180
90 païvo pationts	600	180
 Infected with various HCV genotypes (GT) 	1000	180
Randomized into 5 treatment arms	1000	0
Data	0	180

- PK concentrations of ALV, peg-IFN
- Viral load data

Methods

Modeling strategy

- Build PK models for ALV and peg-IFN
- Build viral kinetic model⁽¹⁾ by incorporating individual PK prediction Infection

ε

 β : infection rate p: production rate per infected cell c: clearance rate of free virus δ : loss rate of infected cells

- ε: treatment effectiveness

$$\frac{dI}{dt} = \beta VT - \delta I$$
$$\frac{dV}{dt} = (1 - \varepsilon)pI - cV$$
$$\varepsilon_{ALV}(t) = \frac{C_{ALV}(t)}{IC50_{ALV} + C_{ALV}(t)}$$
$$\varepsilon_{peg}(t) = \frac{C_{peg}(t)}{IC50_{peg} + C_{peg}(t)}$$
$$\varepsilon = 1 - (1 - \varepsilon_{peg})(1 - \varepsilon_{ALV})$$

Parameter estimation: SAEM (MONOLIX 4.2)

15 ⁽¹⁾ Neumann et al, Science (1998)

Results: Spaghetti plots

Results: Individual fits

Scatterplot of npde vs time for final PK-VK model

 ⇒PK-VK model is adequate to describe viral kinetics in the 203 study
 ⇒Will it be able to predict virologic response in another study?

External validation - Simulation

VITAL-I study (phase 2b)

- Different dosing regimens and different combinations of ALV
 - ALV 600 mg/Ribavirin (RBV)
 - ALV 800 mg/Ribavirin
 - ALV 600 mg/peg-IFN
- Complex design: responseguided therapy

Compare model predictions and virologic response of VITAL-1 study

- Sustained virologic response (SVR): undetectable viral load 24 weeks after stop of treatment
- Prediction of SVR: SVR achieved if the "cure boundary" is reached during treatment (<1 predicted infected cell in the whole body fluids)^(1,2)

External validation - Results

	% BQL data at week 4		% BQL data at week 12		% SVR	
Treatment arms						
	Observed	Predicted*	Observed	Predicted*	Observed	Predicted*
ALV 600 mg/RBV	37.0	44.0	99.0	92.9	91	91.7
(N=77)		(33.8 – 51.9)		(88.3 - 96.8)		(85.7 – 96.1)
ALV 800 mg/RBV	42.0	46.8	98.0	93.6	91	92.6
(N=80)		(36.3 – 58.4)		(88.1 – 97.5)		(86.3 - 97.5)
ALV 600 mg/peg-IFN	85.0	87.2	96.0	96.2	91	94.9
(N=35)		(74.3 – 95.8)		(89.9 - 100.0)		(87.1 - 100.0)

*Median (95% prediction interval obtained from 100 simulations)

Project 3

Impact of BQL data, design and *a priori* information of population parameters on individual parameter estimates and prediction of treatment outcome

	Citation: CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e56; doi:10.1038/psp.2013.31 © 2013 ASCPT All rights reserved 2163-8306/12			
	www.nature.com/psp			
ORIGINAL ARTICLE				
Influence of a priori Information, Designs, and Undetectable Data on Individual Parameters Estimation and Prediction of Hepatitis C Treatment Outcome				
THT Nguyen, ^{1,2} J Guedj, ^{1,2} J Yu, ³ M Levi ⁴ and F Mentré ^{1,5}				

Methods: Simulation study

Data simulation

 Virologic response in 1000 patients using typical parameters found in HCV GT-2/3 patients receiving peg-IFN/RBV for 24 weeks⁽¹⁾

Individual parameter estimation & SVR prediction

- Bayesian approach
- A priori information
 - True model (M_{GT-2/3})
 - False model (M_{GT-1}): typical viral kinetic parameters of HCV GT-1 patients⁽²⁾
- Design: Day 0, Week 1, Week 2, Week 4 (influence of design not shown)
- Methods for handling BQL data
 - OMIT_BQL: omitting all BQL data
 - CONSIDER_BQL: taking into account BQL data
- Comparison of predicted and simulated SVR for each patient

^{22 &}lt;sup>(1)</sup> Bochud et al, J Hepatol (2011) ⁽²⁾ Dahari et al., Hepatol (2007)

- Good prediction with the true model M_{GT-2/3} regardless of methods for handling BQL data
- Good prediction with the false model M_{GT-1} if BQL data correctly handled

Conclusions

- Extended pd/npde for handling BQL data show better behaviors than naïve evaluation methods
- These metrics were implemented in npde 2.0
- The new metrics were used to evaluate a model of HCV kinetics during a short term treatment with alisporivir
- This model provided good predictions for both early viral kinetics and treatment outcome in a subsequent phase 2 study
- Bayesian estimation of individual parameters could provide good prediction of treatment outcome from only few early responses if BQL data are correctly handled

Perspectives

- Extension of other evaluation metrics to handle BQL data
- Comparison with other approaches that handle BQL data (e.g., IPRED method in MONOLIX)
- Prediction of individual treatment outcome with uncertainty using a posteriori distribution of individual parameters
- Optimal design which accounts for BQL data to obtain precise individual estimation/prediction
- Evaluation of viral kinetic prediction for HCV treatment individualization

Thank you for your attention!

- Jérémie Guedj
- Emmanuelle Comets
- all members of B.I.P team

me

- Micha Levi
- Jing Yu
- Olivier Luttringer

U NOVARTIS

- Jean-Louis Steimer
- Colin Pillai
- HCV clinical team