Using PET total volume of distribution (V_T) in estimating the PK-RO relationship in the absence of reference regions.

Alienor Berges(1), Stefano Zamuner(2), Bart Laurijssens(1), Roger Gunn(3), Vincent Cunningham(3), Chao Chen(1) (1)GlaxoSmithkline, CPMS, Greenford, UK; (2)GlaxoSmithkline, CPMS, Verona, Italy; (3)GlaxoSmithkline, Imaging, London, UK

Introduction

In a Positron Emission Tomography (PET) study, receptor occupancy (RO) can be obtained from the fractional decrease in the volume of distribution of the specifically bound radioligand (Vs)[1]. Vs can be derived from V_T (total volume of distribution) and V_{ND} (non-displaceable radioligand) which is generally measured directly from reference regions.

In the absence of reference regions, RO values and $V_{\rm ND}$ can be estimated by linear regression using volume of distribution at baseline (V_{T0}) and after drug administration (V_T) [2].

Objectives

 \bullet To apply a population approach using V_T values in a PET study in order to estimate the PK-RO relationship.

- To compare the proposed approach to the
- conventional one which uses the derived RO values.

Methods

Data

 Data from a neuroreceptor drug occupancy study. Range of single doses tested to characterize the PK-RO relationship

• PET scans at baseline, tmax and 24h post dose

• PK profiles measured after each dose. Calculation of Cave (average concentration during the PET scan) as a mean between pre scan and post scan concentrations.

Models

A population modelling approach was applied for both $V_{\rm T}$ and derived RO values in NONMEM V.

Model assumptions:

- direct C_{ave}-RO relationship (indirect model explored but limited data),

- slope fixed to 1 on theoretical grounds,

- V_{T0} constant over the time,

- same RO and V_{ND} over the brain regions.

V₊ model

 V_{τ} values from the PET study were simultaneously fitted using the equation based on the Emax model:

$$V_{Tij} = V_{T0ij} - \left(\frac{C_{ave\,i}}{EC_{50i} + C_{ave\,i}}\right) \times \left(V_{T0ij} - V_{NDi}\right)$$

where i is a subject, j is a brain region, $V_{\tau_{ij}}$ is the measured PET volume of distribution, $C_{\rm avei}$ is the average concentration during the oracle PET scan.

 \bullet EC_{_{50i}}, V_{_{T0ij}} and V_{_{NDi}} were estimated using a population approach including all the brain regions.

Proportional inter-subject variability and residual error

were preferred. • RO values were calculated from the individual V_{Tij} V_{T0ii} and V_{NDi} using the V_{T} model above.

RO model

Derived RO values were described by an Emax model:

$$RO_i = \frac{E \max \times C_{ave_i}}{EC_{50i} + C_{ave_i}}$$

where i is a subject, RO, is the receptor occupancy value derived by linear regression, $C_{\rm scal}$ is the average concentration during the PET scan, EC_{so} is estimated and Emax is fixed to 100%.

The following residual error models were tested:

- proportional error model,

ŀ

- additive error model,

- a model derived from the propagation of the error applied to $V_{\scriptscriptstyle T}$ observations, in this case the variance can be described as:

$$\sigma_{RO}^2 = \sigma^2 (100 - RO)^2$$

ere σ is derived assuming a proportional error model on the volume of distribution observations (Appendix).

Model evaluation

• To characterize V_{τ} model performance: Visual predictive check (VPC) of V_T as a function of C_{ave} per brain region.

To compare PK-RO profiles across different models: VPC of RO as a function of Cave where RO values are i) derived by linear regression and the RO model or ii) calculated from the V_{τ} model.

Results

Data description

- 3 doses investigated: 6ug, 14ug and 120ug.
- 11 Cave calculated from the plasma concentrations.
- 17 PET scan measurements: 6 at baseline, 6 at tmax
- (3h post dose) and 5 at t24 (24h post dose). For each scan, V_τ measured across 12 brain regions.

PKPD population estimates

	V _T model ^[1]	RO models		
		Propagation error	Proportional error	Additive error
EC ₅₀ ng/mL CV (%)	0.007 30%	0.007 29%	0.004 14%	0.005 19%
Ω EC ₅₀ CV (%)	44 % 76%	55% 35%	ND	ND
Res. error CV (%)	12% 11%	32% 25%	18.5% 43%	12.5 19%

[1] = Typical values and variances of V_{TOj} per brain region and V_{NDi} were well estimated (CV <20%) ND= Not Determinable

• Similar EC_{50} between V_T model and RO model with

propagation error. Smaller EC50 estimates provided by RO models with proportional and additive errors.

Inter-subject variability on EC₅₀ estimated only using

V_T model and RO model with propagation error.

 Residual error values smaller for the V_T values than for the RO values.

Diagnosis plots for the V_T model

Goodness of fit plots

Based on the plots below, satisfactory prediction of the V₊ model.

Figure 1. V, observed versus PRED and IPRED

Visual Predictive Check

VPC in each brain region: observations well distributed around the median and satisfactory overall variability. VPC for two regions reported in Figure 2.

Figure 2. VPC of V_T for Caudate and Hippocampus brain regions Dots = observed V_T in a brain region, blue line = model predicted V_T median, red line = 5th and 95th percentile

VPC of RO across models

• Satisfactory VPC using V_T values or using RO values with an error propagation model.

· Proportional and additive error models on RO values inflated the overall variability.

Figure 3. VPC of RO as a function of C., for the different models

Conclusions

· A population modelling approach was proposed to characterize the PK-RO relationship in PET studies using the PET total distribution volume (V_T) when no reference region exists.

• Model using V_T values provided additional information on V_{T0ii}, V_{NDi} as well as robust estimates of EC_{50i}, intersubject variability and residual variability.

 Consistent results in terms of typical value of EC₅₀ inter-subject variability and VPC were obtained between the approach using V_T values and RO values with a propagation error model.

• The proportional and additive error models inflated variability at high RO values and should not be considered for simulation purposes (e.g, simulations at steady state)

• Although a clear benefit of the V_T model versus all the RO models was not shown in this PET study, we believe that the $V_{\rm T}$ model would provide more robust estimates in the case of a drug with a complex mechanism of action (eg. indirect response).

Appendix

Propagation Error Model

$$RO = f(VT, VT_0) = \frac{VT_0 - VT}{VT_0 - V_{ND}} = 1 - \frac{BP}{BP_0}$$

where BPo and BP is the binding potential at baseline and after treatment, respectively.

Assuming a proportional error on the observations $(\sigma_{BP}=BP^* \sigma)$ and using the propagation of the error formula, RO variance can be described as:

- [1] Lammertsma et al. JCBFM 11:545-556, 1991.
- [2] Lassen et al. JCBFM 15:152-65, 1995.

