Added value of concentration-response over dose-response in estimating the ED₅₀

Alienor Berges, Monica Simeoni, Bart Laurijssens, Chao Chen GlaxoSmithkline, Clinical Pharmacology Modelling & Simulation, Greenford, UK

Background & Objective

Identifying the dose with an optimal benefit-risk ratio is crucial in drug development, therefore confident and efficient characterisation of efficacy and toxicity as a function of dose is important. Using concentration-response relationship as a potentially more powerful tool for dose finding is increasingly appreciated. However, PK sampling is inconvenient; drug assays are costly and PKPD analysis may be time consuming. In this study, we attempted to quantify the incremental value of concentration-response (CR) over dose-response analysis (DR).

The objective of the current work was to compare the precision and accuracy of ED_{so} estimation directly through DR and indirectly through CR analyses in common dose-finding studies.

Methods

1) Simulation

Hypothetical drug response was simulated across different scenarios to investigate the impact of potentially relevant drug and design properties on imprecision and bias of ED_{eo} Per scenario, 300 replicate parallel dose-ranging trials of 50 patients per trial were simulated.

Simulation assumptions

- Direct Emax model as a function of steady state drug concentration (linear PK assumed).
- Log-normal between-subject variability on EC50, Emax and CL/F.
- Proportional residual error in PD response.

Scenarios

Top dose=ED5

Iter variability on CUP
medium cariability on C

8 2 down per group

CR

and variability on EC50

variability on EC50.

- Factors with impact for CR:

- Factors with impact for DR:

top dose, variability on CL/F,

variability on Emax and

top dose, variability on Emax

• For RMSE[•]

DR

8

.

8

8

8

The following drug and design properties were chosen to mirror typical dose finding studies when drug efficacy is unknown and led to 486 scenarios

- Between-subject variability (CV) on CL/F of 25, 50 or 75%

1) Imprecision and bias for CR & DR across all scenarios

- Between-subject variability (CV) on Emax of 25, 50 or 75%
- Between-subject variability (CV) on EC550 of 25, 50 or 75%
- Residual error in PD response of 5, 15 or 25%
- A top dose (a hypothetical safety limit) of ED₉₀, ED₇₀ or ED₅₀
- Three or six dose groups

RMSE (%)

Dose levels were multiples of ED_{50} , depending on top dose and number of dose groups.

Top dose-EDS

Ibe variability on CLF
medium variability on CLF
high variability on CLF

11

白白

. 1 1

1 a 🖥

HL.

◆ CR

For MF

ME (%)

Difference in RMSE (%)

2) Analysis

RMSE

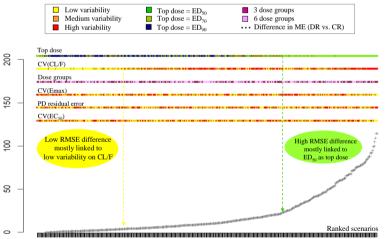
- CR or DR analysis, as appropriate, was conducted for each trial replicate.
- Population EC₅₀ (for CR), ED₅₀ (for DR), Emax and PD residual error were estimated. - Between-subject variability was not estimated (one dose per subject).

3) Comparison of CR and DR analysis

- To allow CR/DR comparison, ED₅₀ population estimate from CR was calculated as: ED₅₀=EC₅₀*CL/F
- where EC_{50} was the estimate from the CR analysis, and CL/F the geomean of simulated CL/F in the replicate. - Imprecision (RMSE%) and bias (ME%) calculated for CR & DR analyses per scenario (1):

$$(\%) = \frac{\sqrt{\sum_{k=1}^{N-300}} (\theta_k - \theta_T)^2}{\frac{N}{\theta_T}} \times 100 \qquad ME(\%) = \frac{\sum_{k=1}^{N-300}}{\frac{N}{\theta_T}}$$

where - k is the kth simulated dataset [1-300] $(\theta_k - \theta_T)$ θ_k is the parameter estimate -×100 N×A_ - θ_{τ} is the true parameter value


- Differences in RMSE% and in ME% between CR and DR were calculated to assess the added value of CR over DR analysis.

Results

2) Quantification of the incremental value of CR over DR (50 patients per trial)

. When the RMSE/ME difference between DR and CR is sorted in ascending order, a pattern of those drug or design properties that have a clear impact on such difference becomes apparent.

DR/CR difference in RMSE (same pattern observed for DR/CR difference in ME) :

 CR consistently out-performed DR with difference in RMSE and ME up to 100% and 40% respectively. • Large difference between DR and CR (from ~25% to ~110% for RMSE and from ~10% to ~40% for ME) was almost all linked to top dose being less than ED70. Conversely, small difference (up to 5% for RMSE and ME) was mostly linked to CL/F variability less than 50%.

The difference in ME and RMSE between CR and DR was less sensitive to the dose groups, the variability in Emax, the PD residual error and the variability in EC₅₀.

Discussion/Conclusions

- For all scenarios investigated here, CR consistently out-performs DR in ED₅₀ estimate precision and accuracy. - In the context of a parallel design (n=50) with a direct Emax model, the top dose is the only factor which consistently differentiated CR from DR in terms of RMSE and ME (up to 110% for RMSE and 40% for ME). - These preliminary results are limited to a specific design and model. Further investigations such as cross-over

design or more complex model need to be investigated. - This project forms a simulation frame work for assessing the value added by PKPD analysis in ED_{so} estimation.

It does not address the other advantages of having a CR approach like the time inclusion in PD response.

variability on EC₅₀ (small). - Factors with impact for DR: top dose, variability on CL/F, dose References groups, variability on Emax, and variability on EC₅₀.

◆ DR

- Factors with impact for CR:

top dose, variability on Emax and

(1) Dansirikul et al, J Pharmacokinet Pharmacodyn, Vol. 35, No. 3, 2008

Acknowledgment We thank Shuying Yang for her expert advice in statistics