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Outlines

• What is GPU and why do we want to use it?

• What is QRPEM and why QRPEM for GPU-
computing?

• Example of first GPU-based QRPEM estimation 
method for population PK/PD data analysis
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What is GPU

• GPU= Graphic Processor Unit

- Chip in computer video cards, PlayStation 3, Xbox, etc.

- Two major vendors: NVIDIA and ATI (AMD)

• Originally designed for maximum performance in 
numerical intensive image processing (modern 
games)

• GPUs are massively multithreaded many-core chips

NVIDIA Quadro FX 5800 GPU card
* 240 parallel processing cores 
* 930 GFLOPS sustained performances vs. 

106 GFLOPS for Intel Core i7 975XE (3.3GHz)
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Comparison Between Computer CPU 
and GPU

The GPU is specialized for compute-intensive, highly parallel computation
So, more transistor can be devoted to data processing rather than data 
caching and flow control

ALU – arithmetic logic unit that performs arithmetic and logical operations

CUDA Programming Guide 4



Why GPU?

CONS
- Specialized
- Hard to program
- Rapidly changing

PRO
- Fast
- Cheap
- Low-power
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GPU’s are Much Faster Than CPU’s

NVIDIA GeForce GTX 480
Cost ~ 300 USD

Source:  CUDA Programming Guide;    Intel Westmere : Intel Xeon X5600 series CPU 6



Fastest Supercomputer in the World is 
Powered by GPU Technology

Tianhe-1A system in China
2.57 PFLOPS (1015 floating point calculations per second) !

Source:  http://www.top500.org/list/2010/11/100

7,168 NVIDIA Tesla 
M2050 GPUs  + 14, 366 
CPUs
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Performance (GLOPS)
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Power Efficiency of the Supercomputer
Performance/Power Ratio

Supercomputers powered by GPU-computing technology 
are more energy efficient (GREEN- COMPUTING)

0 = No GPU;  1 = GPU

0 1

P
e
rf

o
rm

a
n

c
e
/P

o
w

e
r 

R
a
ti
o
 (

G
L

O
P

S
/M

W
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data from Source:  http://www.top500.org/list/2010/11/100 8

GPU

Three of the World’s Top Five Supercomputers are Powered by GPU-
computing Technology



Why GPU?

CONS
- Specialized
- Hard to program
- Rapidly changing

PRO
- Fast
- Cheap
- Low-power
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GPU Computing Today:  CUDA

• Compute Unified Device Architectures (CUDA)
- C programming language on GPUs
- Access to native instruction and memory
- Requires no knowledge of graphic APIs or 

specific GPU programming
- Developed by NVIDIA; Stable, available (for 

free), documented and supported for both 
Linux and Windows

- Geared towards scientific programming
• GPU is now a “Computational Coprocessor”

Modified from http://www.scs.fsu.edu/~bollig/CUDA and John Seland: CUDA programming 10

http://www.scs.fsu.edu/~bollig/CUDA


Successful Stories of GPU Computing
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What is QRPEM and Why 
QRPEM for GPU Computing?
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Two-stages  (Parametric) NLME Estimation Methods 
Used in the Population PK/PD Data Analysis

• Approximate Methods

- FO/FOCE (NONMEM) and ITS 

• Exact “Likelihood” Methods

Gaussian Quadrature and Importance 
Sampling

EM – MCPEM (S-ADAPT and NONMEM), SAEM
(Monolix, S-ADAPT and NONMEM), and 
QRPEM

NLME – Nonlinear mixed-effect model
FO – First-order;  FOCE – First-order Conditional Estimation; ITS – Iterative 2-stages ;
SAEM - Stochastic Approximation EM; MCPEM – Monte-Carlo Parametric EM; QRPEM – Quassi-random Parametric EM –
Parametric EM
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Exact “Likelihood” Methods are Performed Better Than 
or Equal to the Methods That Approximated the 

Likelihood 

14

Pascal Girard and France Mentré .  A comparison of estimation 
methods in nonlinear mixed effects models using a blind 
analysis. PAGE 14 (2005) Abstr 834 



EM-based “Exact-likelihood” Estimation Methods Were 
Used Successfully in Developing Population PK/PD Model

JPP 2007

MCPEM

SAEM
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Expectation Maximization (EM) Estimation 
Method for Population Data Analysis 

• Iterative optimization process

Expectation (E) Maximization (M)

Repeat E and M steps until population parameters  no longer 
change (Maximum Likelihood is reached) 
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Expectation Maximization (EM) 
Algorithm:  Expectation (E) Step

• The most computational intensive step in the 
EM

• Goal:  to obtain individual conditional mean 
(mode) and variance-covariance matrix that 
used to update the population parameters in 
maximization (M) steps
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Expectation Maximization (EM) 
Algorithm:  Maximization (M) Step

• Updating the population parameters
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= Population Mean;   = Population variance;  I = Individual conditional 
mean; Bi = individual variance-covariance matrix
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EM Algorithm and Parallel Computing

• The EM algorithm is suitable for parallel 
computing because in the most computational 
intensive E step:

• The conditional mean and variance of each subject 

• Generated random samples used to obtain the 
conditional mean and variance for each individual 
(Stochastic EM)

• Are independent from each others, and 
therefore can be evaluated separately!
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EM Algorithm and Parallel Computing

The computation of the E step in the EM 
algorithm can be parallelized based on

1. Subject (Parallel computing of MCPEM in 
S-ADAPT/NONMEM)

2. Generated random numbers within each 
subject (GPU-based MCPEM)

20

First prototype of the GPU-based EM method (MCPEM using pseudo random number 
generator ; workstation with Tesla GPU) for population data analysis [ACOP 2011]
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Classification of EM Estimation Methods for 
Population Data Analysis (Based on E-step)

• Deterministic
- Gaussian Quadrature

• Stochastic
* Sampling techniques

1. Monte-Carlo
Direct Sampling (S-ADAPT), Rejection Sampling (SADAPT), 
Importance Sampling (MCPEM in S-ADAPT/NONMEM), 
Stratified Sampling, Recursive stratified sampling, VEGAS, 
and others

2. SAEM (MCMC) [ Monolix/S-ADAPT/NONMEM ]

* Random Number Generation
1. Pseudo-random (PR)
2. Quasi-random (QR)
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QR - PEM

22

QR – Quasi-random

The QR sampler can be used by 
many sampling techniques such 
as importance and direct 
sampling

PEM – Parametric 
Expectation Maximization
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Why QRPEM
• Evaluation of the E-step in stochastic EM methods (MCPEM) required the 

computation of multi-dimensional integrals

• For pseudo-random (PR) number, the estimation error of the integrals will 
decrease at the rate of N-1/2 (Error decay rate).

• Quasi-random (QR) sequence (low discrepancy sequences):  In optimal case, 
QR has a much better decay rate of N-1.  

• To reduce the error by a factor of 10  increase PR number by 100 x the 
number of simulation N, and in theory only needed ~ 10 X for QR

23Source:   Niederreiter 1992; Morokoff 2000; Birge 1995; Leary 2011

PR QR

2000  2-dimensional 
random points



GPU-based QRPEM for Population PK/PD 
Data Analysis

• A single laptop computer equipped with an INTEL Core 
i7-920 Extreme Quad-core processor (2GHz) and

• NVIDIA Quadro FX3800M video graphic card with 128 
stream processors

24
Windows 7 64-bit OS and 8GB RAM memory
NVIDIA FX3800M – 1G RAM; 60 GB/sec bandwidth (256-bit); clock speed - 675 MHz



GPU-based QRPEM
Heterogeneous Computing

• Computing with CPU and GPU

CPU
M Step

GPU 
E steps + partial derivatives of the 

intra-individual variance matrix

25

The GPU-based MCPEM (QRPEM-GPU) was developed using MATLAB R2009a and 
JACKET® GPU toolbox with NVIDIA CUDA GPU computing toolbox (3.2)



Simulated Data for Assessment of 
QRPEM-GPU Performance

• A one-compartment IV bolus PK model with intensive 
sampling schedule
- Inter-subject variability:  Log-normal distributed

- Intra-subject variability:  Proportional error model
- Five system parameters (CL, V, IIV_CL, IIV_V and Sigma)

Number of simulated trial = 100
• Number of simulated subjects for each trial:  25, 50, 

100, and 150
• Number of QR (Sobol sequences with scrambling) direct 

random samples:  500, 1000, 2000, 5000, and 10000
• The results were compared to those obtained from a 

identical QRPEM method developed and executed in a 
INTEL CPU (QRPEM-CPU)
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QRPEM-GPU Achieved Model 
Convergence Faster Than QRPEM-CPU

Number of Simulated Trial = 100;  Number of simulated subject per trial = 100; Number 
of QR Samples for E step:  1000; Number of MCPEM iteration = 30
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Number of QR Random Samples
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Performance of the QRPEM-GPU
Mean Model Converging Times vs. Number of QR 

Random Samples

• QRPEM-GPU has a better scaling relationships between mean 
model converging times and number of QR random samples
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Number of QR Random Samples
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QRPEM-GPU was ~20-folds faster than QRPEM-CPU in achieving model 
convergence when 20000 of QR random samples was used

Speedup factor = Model converging time of QRPEM-CPU/Model Converging Time of QRPEM-GPU 29



The Precision and Bias of the Final Model Parameters 
Were Comparable for Both QRPEM Algorithm
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CL V IIV_CL IIV_V Sigma

Precision (MAPE)

QRPEM-CPU 4.9 5.3 3.0 5.1 2.3

QRPEM-GPU 4.9 5.3 3.0 4.7 2.2
Bias (MPE)

QRPEM-CPU 4.9 5.3 0.36 -0.15 1.5

QRPEM-GPU 4.9 5.3 0.13 -0.29 1.5

Number of Simulated Trial = 100;  Number of simulated subject per trial = 100; Number of QR Samples for E 
step:  1000; Number of MCPEM iteration = 30



Performance of the QRPEM-GPU
Mean Model Converging Times vs. Number of Subjects
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Number of Subjects 
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Conclusions

• To my best knowledge, this is the first GPU-
based parallelized QRPEM algorithm 
developed and reported in the literature for 
population PK data analysis

• Innovative, GPU-oriented approaches can lead 
to vast speed-up, and reduce data analysis 
and model development times
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Future Works

• A study is ongoing to 
- expand the capability of the estimation 

algorithm in using parallel differential 
equation solver to develop complex 
population PK/PD model ; Multiple doses; 
Model converging criteria for likelihood ratio 
test

- improve the efficiency of the algorithm 
either through further parallelization of the 
program codes or with multiple GPU 
processors
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University of Pennsylvania/Children Hospital of 
Philadelphia NVIDIA CUDA Research Center

• Medical imaging analysis  (DCI-MRI) 
in assessing the pharmacodynamic of 
the studied drug in preclinical/clinical 
studies

• GPU-based global optimization 
algorithm (GA/pattern-search) for 
complex PK/PD data analysis (Ng CM. 
ACOP 2010)

• GPU-based NLME Estimation method 
for population data analysis

• Machine learning/Artificial 
intelligent/Rule-based PK/PD/disease 
model development

• Others
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