
GPU-based Parallelized Quasi-random Parametric
Expectation Maximization (QPREM) Estimation

Algorithm for Population Data Analysis

Chee M Ng, PharmD, PhD, FCP

Outlines

• What is GPU and why do we want to use it?

• What is QRPEM and why QRPEM for GPU-
computing?

• Example of first GPU-based QRPEM estimation
method for population PK/PD data analysis

2

What is GPU

• GPU= Graphic Processor Unit

- Chip in computer video cards, PlayStation 3, Xbox, etc.

- Two major vendors: NVIDIA and ATI (AMD)

• Originally designed for maximum performance in
numerical intensive image processing (modern
games)

• GPUs are massively multithreaded many-core chips

NVIDIA Quadro FX 5800 GPU card
* 240 parallel processing cores
* 930 GFLOPS sustained performances vs.

106 GFLOPS for Intel Core i7 975XE (3.3GHz)

3

Comparison Between Computer CPU
and GPU

The GPU is specialized for compute-intensive, highly parallel computation
So, more transistor can be devoted to data processing rather than data
caching and flow control

ALU – arithmetic logic unit that performs arithmetic and logical operations

CUDA Programming Guide 4

Why GPU?

CONS
- Specialized
- Hard to program
- Rapidly changing

PRO
- Fast
- Cheap
- Low-power

5

GPU’s are Much Faster Than CPU’s

NVIDIA GeForce GTX 480
Cost ~ 300 USD

Source: CUDA Programming Guide; Intel Westmere : Intel Xeon X5600 series CPU 6

Fastest Supercomputer in the World is
Powered by GPU Technology

Tianhe-1A system in China
2.57 PFLOPS (1015 floating point calculations per second) !

Source: http://www.top500.org/list/2010/11/100

7,168 NVIDIA Tesla
M2050 GPUs + 14, 366
CPUs

7

Performance (GLOPS)

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

P
e

rf
o

rm
a

n
c
e

/P
o

w
e

r
R

a
ti
o

 (
G

F
L

O
P

S
/M

W
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No GPU

GPU

Power Efficiency of the Supercomputer
Performance/Power Ratio

Supercomputers powered by GPU-computing technology
are more energy efficient (GREEN- COMPUTING)

0 = No GPU; 1 = GPU

0 1

P
e
rf

o
rm

a
n

c
e
/P

o
w

e
r

R
a
ti
o
 (

G
L

O
P

S
/M

W
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data from Source: http://www.top500.org/list/2010/11/100 8

GPU

Three of the World’s Top Five Supercomputers are Powered by GPU-
computing Technology

Why GPU?

CONS
- Specialized
- Hard to program
- Rapidly changing

PRO
- Fast
- Cheap
- Low-power

9

GPU Computing Today: CUDA

• Compute Unified Device Architectures (CUDA)
- C programming language on GPUs
- Access to native instruction and memory
- Requires no knowledge of graphic APIs or

specific GPU programming
- Developed by NVIDIA; Stable, available (for

free), documented and supported for both
Linux and Windows

- Geared towards scientific programming
• GPU is now a “Computational Coprocessor”

Modified from http://www.scs.fsu.edu/~bollig/CUDA and John Seland: CUDA programming 10

http://www.scs.fsu.edu/~bollig/CUDA

Successful Stories of GPU Computing

11

What is QRPEM and Why
QRPEM for GPU Computing?

12

Two-stages (Parametric) NLME Estimation Methods
Used in the Population PK/PD Data Analysis

• Approximate Methods

- FO/FOCE (NONMEM) and ITS

• Exact “Likelihood” Methods

Gaussian Quadrature and Importance
Sampling

EM – MCPEM (S-ADAPT and NONMEM), SAEM
(Monolix, S-ADAPT and NONMEM), and
QRPEM

NLME – Nonlinear mixed-effect model
FO – First-order; FOCE – First-order Conditional Estimation; ITS – Iterative 2-stages ;
SAEM - Stochastic Approximation EM; MCPEM – Monte-Carlo Parametric EM; QRPEM – Quassi-random Parametric EM –
Parametric EM

13

Exact “Likelihood” Methods are Performed Better Than
or Equal to the Methods That Approximated the

Likelihood

14

Pascal Girard and France Mentré . A comparison of estimation
methods in nonlinear mixed effects models using a blind
analysis. PAGE 14 (2005) Abstr 834

EM-based “Exact-likelihood” Estimation Methods Were
Used Successfully in Developing Population PK/PD Model

JPP 2007

MCPEM

SAEM

15

Expectation Maximization (EM) Estimation
Method for Population Data Analysis

• Iterative optimization process

Expectation (E) Maximization (M)

Repeat E and M steps until population parameters no longer
change (Maximum Likelihood is reached)

16

Expectation Maximization (EM)
Algorithm: Expectation (E) Step

• The most computational intensive step in the
EM

• Goal: to obtain individual conditional mean
(mode) and variance-covariance matrix that
used to update the population parameters in
maximization (M) steps
























dyp

dyp

i

i

i

),|,(

),|,(
Individual Conditional
Mean

17

Expectation Maximization (EM)
Algorithm: Maximization (M) Step

• Updating the population parameters













n

i

i

n

i

i

n

i

i

B
n

i
n

n

11

1

1
)')((

1

1





= Population Mean;  = Population variance; I = Individual conditional
mean; Bi = individual variance-covariance matrix

18

EM Algorithm and Parallel Computing

• The EM algorithm is suitable for parallel
computing because in the most computational
intensive E step:

• The conditional mean and variance of each subject

• Generated random samples used to obtain the
conditional mean and variance for each individual
(Stochastic EM)

• Are independent from each others, and
therefore can be evaluated separately!

19

EM Algorithm and Parallel Computing

The computation of the E step in the EM
algorithm can be parallelized based on

1. Subject (Parallel computing of MCPEM in
S-ADAPT/NONMEM)

2. Generated random numbers within each
subject (GPU-based MCPEM)

20

First prototype of the GPU-based EM method (MCPEM using pseudo random number
generator ; workstation with Tesla GPU) for population data analysis [ACOP 2011]

21

Classification of EM Estimation Methods for
Population Data Analysis (Based on E-step)

• Deterministic
- Gaussian Quadrature

• Stochastic
* Sampling techniques

1. Monte-Carlo
Direct Sampling (S-ADAPT), Rejection Sampling (SADAPT),
Importance Sampling (MCPEM in S-ADAPT/NONMEM),
Stratified Sampling, Recursive stratified sampling, VEGAS,
and others

2. SAEM (MCMC) [Monolix/S-ADAPT/NONMEM]

* Random Number Generation
1. Pseudo-random (PR)
2. Quasi-random (QR)

22

QR - PEM

22

QR – Quasi-random

The QR sampler can be used by
many sampling techniques such
as importance and direct
sampling

PEM – Parametric
Expectation Maximization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2000 2-dimensional Uniformly Distributed Random Points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2000 2-dimensional Uniformly Distributed Quasi-random Points

Why QRPEM
• Evaluation of the E-step in stochastic EM methods (MCPEM) required the

computation of multi-dimensional integrals

• For pseudo-random (PR) number, the estimation error of the integrals will
decrease at the rate of N-1/2 (Error decay rate).

• Quasi-random (QR) sequence (low discrepancy sequences): In optimal case,
QR has a much better decay rate of N-1.

• To reduce the error by a factor of 10  increase PR number by 100 x the
number of simulation N, and in theory only needed ~ 10 X for QR

23Source: Niederreiter 1992; Morokoff 2000; Birge 1995; Leary 2011

PR QR

2000 2-dimensional
random points

GPU-based QRPEM for Population PK/PD
Data Analysis

• A single laptop computer equipped with an INTEL Core
i7-920 Extreme Quad-core processor (2GHz) and

• NVIDIA Quadro FX3800M video graphic card with 128
stream processors

24
Windows 7 64-bit OS and 8GB RAM memory
NVIDIA FX3800M – 1G RAM; 60 GB/sec bandwidth (256-bit); clock speed - 675 MHz

GPU-based QRPEM
Heterogeneous Computing

• Computing with CPU and GPU

CPU
M Step

GPU
E steps + partial derivatives of the

intra-individual variance matrix

25

The GPU-based MCPEM (QRPEM-GPU) was developed using MATLAB R2009a and
JACKET® GPU toolbox with NVIDIA CUDA GPU computing toolbox (3.2)

Simulated Data for Assessment of
QRPEM-GPU Performance

• A one-compartment IV bolus PK model with intensive
sampling schedule
- Inter-subject variability: Log-normal distributed

- Intra-subject variability: Proportional error model
- Five system parameters (CL, V, IIV_CL, IIV_V and Sigma)

Number of simulated trial = 100
• Number of simulated subjects for each trial: 25, 50,

100, and 150
• Number of QR (Sobol sequences with scrambling) direct

random samples: 500, 1000, 2000, 5000, and 10000
• The results were compared to those obtained from a

identical QRPEM method developed and executed in a
INTEL CPU (QRPEM-CPU)

26

QRPEM-CPU QRPEM-GPU

C
o
m

p
u
ta

ti
o
n

 T
im

e
s
 (

m
in

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

QRPEM-GPU Achieved Model
Convergence Faster Than QRPEM-CPU

Number of Simulated Trial = 100; Number of simulated subject per trial = 100; Number
of QR Samples for E step: 1000; Number of MCPEM iteration = 30

27

Number of QR Random Samples

0 5000 10000 15000 20000

M
e
a
n
 C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
in

)

0

10

20

30

40

50

QRPEM-CPU

QRPEM-GPU

Performance of the QRPEM-GPU
Mean Model Converging Times vs. Number of QR

Random Samples

• QRPEM-GPU has a better scaling relationships between mean
model converging times and number of QR random samples

28

Number of QR Random Samples

0 5000 10000 15000 20000

M
e
a
n
 S

p
e
e
d
u
p
 F

a
c
to

r

0

10

20

30

Speedup Factors of the QRPEM-GPU Increased in Proportional
to the Number of Monte-Carlo Random Samples

QRPEM-GPU was ~20-folds faster than QRPEM-CPU in achieving model
convergence when 20000 of QR random samples was used

Speedup factor = Model converging time of QRPEM-CPU/Model Converging Time of QRPEM-GPU 29

The Precision and Bias of the Final Model Parameters
Were Comparable for Both QRPEM Algorithm

















n

i 1 itrue

itruei
100|

θ

)θ(θ
|

n

1
MAPE 















n

i itrue

itruei

n 1

100
)(1

MPE




n: Number of simulated trials (=100); i : Model estimated values; itrue: True reference values

30

CL V IIV_CL IIV_V Sigma

Precision (MAPE)

QRPEM-CPU 4.9 5.3 3.0 5.1 2.3

QRPEM-GPU 4.9 5.3 3.0 4.7 2.2
Bias (MPE)

QRPEM-CPU 4.9 5.3 0.36 -0.15 1.5

QRPEM-GPU 4.9 5.3 0.13 -0.29 1.5

Number of Simulated Trial = 100; Number of simulated subject per trial = 100; Number of QR Samples for E
step: 1000; Number of MCPEM iteration = 30

Performance of the QRPEM-GPU
Mean Model Converging Times vs. Number of Subjects

31

Number of Subjects

0 20 40 60 80 100 120 140 160

M
e
a
n
 C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
in

)

0

1

2

3

4

5

QRPEM-CPU

QRPEM-GPU

Number of Subjects

0 20 40 60 80 100 120 140 160

M
e
a
n
 S

p
e
e
d
u
p
 F

a
c
to

r
0

2

4

6

8

10

Number of Simulated Trial = 100; Number of QR Samples for E step: 1000; Number of
MCPEM iteration = 30

Conclusions

• To my best knowledge, this is the first GPU-
based parallelized QRPEM algorithm
developed and reported in the literature for
population PK data analysis

• Innovative, GPU-oriented approaches can lead
to vast speed-up, and reduce data analysis
and model development times

32

Future Works

• A study is ongoing to
- expand the capability of the estimation

algorithm in using parallel differential
equation solver to develop complex
population PK/PD model ; Multiple doses;
Model converging criteria for likelihood ratio
test

- improve the efficiency of the algorithm
either through further parallelization of the
program codes or with multiple GPU
processors

33

University of Pennsylvania/Children Hospital of
Philadelphia NVIDIA CUDA Research Center

• Medical imaging analysis (DCI-MRI)
in assessing the pharmacodynamic of
the studied drug in preclinical/clinical
studies

• GPU-based global optimization
algorithm (GA/pattern-search) for
complex PK/PD data analysis (Ng CM.
ACOP 2010)

• GPU-based NLME Estimation method
for population data analysis

• Machine learning/Artificial
intelligent/Rule-based PK/PD/disease
model development

• Others

34

