PK-PD MODELLING OF AN ANTI-PD-L1 MONOCLONAL ANTIBODY

Ana M Contreras -Sandoval¹, María García-Cremades¹, María Merino¹, Kepa Berraondo², Iñaki F. Trocóniz¹, María J. <u>Garrido¹</u> ¹School of Pharmacy. Department of Pharmacy and Pharmaceutical Technology. University of Navarra. 31008 Pamplona. Spain ²Division of Gene Therapy and Hepatology. Center for Applied Medical Research (CIMA). University of Navarra. 31008. Pamplona. Spain

model able to characterize its anti-tumor effect based on different initial tumor sizes (Ts).

Figure 1. Mechanism of tumor evasion from host immunity and anti-PD-L1 mAb strategy

Drug administration: 100µg/mouse, I.V. single dose. Animals and samples: 6 female C57BL/6 mice, were administrated with the drug and serum samples were taken at specific times based on several extraction windows for every animal.

Data analysis: One compartmental model was used to describe plasma concentrations of mAb in mice.

Animal model: B16-OVA melanoma cell line, PD-L1 positive.

Animals: C57BL/6 mice, were randomly divided into four groups (n = 7/group): G1) small Ts, G2) medium Ts, G3) large Ts and G4) control group.

Tumor cells inoculation: $2x10^5$ (CN₁) and $5x10^5$ (CN₂) B16-OVA cells/100µL/mouse were S.C. inoculated on day 0 in one flank of every mouse.

Treatment regimen: 100µg/mouse, I.V. Q3D x 4 administrations.

Data analysis: Time profiles of tumor volume (mm³) data were fit using the Hahnfeldt's model [4].

For PK/PD modelling, all data were log transformed and

the analysis was done using NONMEM 7.2. and R program for graphs.

Figure 2. Schematic representation of the experimental design

RESULTS

Table 2. PK/PD model parameters		
Parameter	Estimates	RSE (%)
α ₁ (days⁻¹)	0.596	48.7
CN₁ (mm³)	20.7	30.2
CN₂ (mm³)	5.35	49
k (mm³)	0.504	67.7
b (days⁻¹)	0.503	8.5
d (days ⁻¹ (mm³) ⁻ ⅔)	0.00044	56.4
Res. error (mm ³)	0.416	6.6
SLOPE (µg/mL)	0.0119	2
γ	0.216	28.7
$IIV_{\alpha_1}(\%)$	80.4	37.6
IIV_CN ₁ (%)	87.4	25.6
IIV_CN ₂ (%)	86.8	96.3

 α_1 : tumor proliferation. **CN₁:** initial tumor size for control population 1. **CN₂:** initial tumor size for control population 2. **k**: carrying capacity or vasculature. **b**: stimulatory capacity of the tumor upon the inducible vasculature. **d:** endogenous inhibition of previously generated vasculature. w: residual error. SLOPE: drug effect constant. y: shape parameter

Time (days)

Figure 6. PRED corrected VPC

 $\frac{dt}{dt} = -\alpha_1 \times (1 - E_{DRUG}) \times T \times Log\left(\frac{1}{w}\right)$

Figure 4. Schematic representation of the PK/PD model for and anti-PD-L1 mAb

Cs

CL

CONCLUSIONS

- The body disposition of the anti-PD-L1 mAb (clone 10F.9.G2) was described by a mono-compartimental model
- 2. The tumor growth of a B16-OVA mouse model was described by the Hanhfeldt model.
- The proliferation rate of B16-OVA cells was affected by the anti-PD-L1 mAb (clone 10F.9.G2) inducing a delay on 3. the tumor growth and that effect was dependent on the initial tumor size.

REFERENCES

[1] Li B, VanRoey M, Wang C, et al. Clin Cancer Res. 2009 Mar 1;15(5):1623-34. [2] Dong H, Strome SE, Salomao DR, et al. Nat Med. 2002 Aug;8(8):793-800. [3] Iwai Y, Ishida M, Tanaka Y, et al. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7. [4] Hahnfeldt P et al. Cancer Res 1999; 59(19):4770-5.

