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Objectives: To develop normalised prediction distribution errors (npde) for time-to-event data and to diagnose their performance by
considering type I error and power, using simulation studies.

Introduction
•Non-linear mixed effect models increasingly used in the drug de-

velopment process

– biomarkers followed throughout the trial and linked with the pri-
mary outcome (survival)

– best described using joint models, which reduce bias in the esti-
mation of model parameters

•Model evaluation

– defined as assessing the adequacy between the tested model M
and the data V

– important part of model development [1]
– graphical and statistical methods available for continuous data,

including VPC [2], npde [3]
– few methods, mostly visual, for non-continuous data

•Objective: develop npde for the time-to-event component of joint
models

Methods

Statistical models
• Let Ti be the observation of the outcome in subject i and Ci the indi-

cator of censoring. If Ci = 0, Ti corresponds to the time of the event,
if Ci = 1 Ti is the censoring time.

•Model for the time-to-event (TTE) outcome characterised by the
instantaneous risk h

h(t| f (θi, t)) = h0(t)× exp(β f (θi, t))

– where h0 is the baseline hazard
– f : structural model (which can be non-linear) of the longitudinal

outcome
∗ individual parameters θi ∼D(µ,Ω) for the subject i, with fixed

effects µ and variance-covariance matrix Ω

– joint model: β represents the strength of the link between the
longitudinal outcome and the time to the event

⇒Model to evaluate:

M = { f ,h,ψ = (µ,Ω,β)}

Model evaluation with npde
Construction
• npde are based on prediction discrepancies pd, defined as the quan-

tile of an observation in its predictive distribution

pdi = Fi(Ti) =
∫ Ti

pi(t|Ψ)dt =
∫ Ti

∫
p(t|θi,Ψ)p(θi|Ψ)dθidt

– where F is approximated by Monte-Carlo simulations (K=1000)
– for censored events, pd are imputed under the predictive distri-

bution (similarly to continuous data below the LOQ[4])
∗ extends to interval-censored TTE
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Test and Graphs

• pd ∼U(0,1) and npde = φ−1(pd)∼N (0,1)

– combined test on the distribution of npde [3]: Wilcoxon test for
mean, Fisher test for variance, and Shapiro-Wilk test for normal-
ity adjusted with the correction of Bonferroni

•Visual diagnostics

– QQplot with 95% confidence interval
– histogram of the npde

Simulation
Motivating example: Desmée et al. 2015 [5]
•Metastatic castration-resistant prostate cancer

•Model developed using data from a phase III clinical trial

– N=500 individuals with 735 days maximum follow-up
– longitudinal observations of PSA (Prostate Specific Antigen) ev-

ery 21 days (maximum of 35 measurements)

• Longitudinal model:

C PSA
p

kout

�
r

e(t)
with e(t) =

{
ε if t ≤ Tesc

0 else

• Time-to-event model:

h(t|PSA(θ, t)) = h0(t)exp(β×PSA(θ, t))
with h0 characterized by a parametric Weibull model h0(t)= k

λ

(
t
λ

)k−1

• Parameters estimated by the SAEM algorithm:

Parameter Fixed effects Transformation IIV (ω)
r 0.05 log-normal 0.1

PSA0 80 log-normal 0.6
ε 0.3 logit-normal 1.5

Tesc 140 log-normal 0.6
d 0.046 fixed -
δ 0.23 fixed -
k 1.52 - 0
λ 873 - 0
β 1.16×10−6 - 0

Evaluating the performance of npde
Performance of npde evaluated by simulation

Simulation of 

data V under 

MV

Estimation 

of F under 

M

Evaluation

Pr(reject H0)

H0:{V described 

by M}

x200

•MV : model used to generate V

• Type I error: % of rejection of M under H0 (M=MV )

• Power: % of rejection of M under H1 (M 6= MV )

• Longitudinal model not evaluated and supposed to be correct
Simulation settings

•Misspecification in the impact of PSA on survival (β)

– h0: Weibull distribution with {k = 1.5, λ = 580}

•Misspecification in the model of h0 (k)

– h0: Weibull distribution with {λ = 580}
– same β for MV and M (β = 10−3)

Implementation
We used the statistical software R (version 3.2.3) and the package

mlxR to simulate the data.

Results

Simulated Data

Figure 1: Predicted PSA (grey) and survival Kaplan-Meier estimate
of survival curve (with 95% CI in dashed line) for one simulated
dataset under a Weibull model ({β = 10−3,λ = 580,k = 1.5}). The
yellow area (resp. blue) represents the 90% prediction interval of the
survival function obtained from 1000 replicates simulated under the
same (True) model (resp. False, β = 5×10−3).

Using npde to evaluate a TTE model

• True model (left): under H0, points remain in the prediction interval
and the p-value is not significant

• False model (right): under H1, most of the points are not in the
prediction interval, and the distribution is shifted to the right as the
model underestimates survival time, leading to p≤ 5%
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Figure 2: Graphical and statistical diagnostics of the npde

Misspecification in the impact of PSA on survival (β)
b = 0 b = 0.001

0

1
e
-0

4

0
.0

0
1

0
.0

0
5 0

1
e
-0

4

0
.0

0
1

0
.0

0
5

0.00

0.25

0.50

0.75

1.00

Value of b in M

p
ro

p
o
rt

io
n
 o

f 
re

je
c
ti
o
n

Type
full
censored

Sample size
50
100
250
500

Figure 3: Type I error and power for the 4 sample sizes N depending
on β. Under H0, the expected prediction interval is represented as a
grey area ([0.024,0.09]).

•Good performances of npde:

– adequate type I error, close to 5% under H0

– as expected, the power increases with the sample size N
– the power increases as the difference between the tested model

and the one used to simulate the data increases

• There is a lower percentage of rejection if data are censored

– because pd are imputed under tested model
– even if corrected for the percentage of censoring

Misspecification in the model of h0 (k)
k = 1.5
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Figure 4: Power of the npde to detect misspecification of h0

• npde able to pick up misspecification in h0 with similar power when
k is changed

Conclusion
•Development of npde for time-to-event data

– can be extended to interval-censored TTE

•Good performance on simulated data

– adequate type I error
– power to detect model misspecifications in the survival model
∗misspecified link between the longitudinal marker and the out-

come
∗misspecification in the shape of the survival curve

• Perspectives:

– extension to joint evaluation when we consider time-to-event
AND longitudinal observations

– extension to joint modeling framework with repeated time-to-
event and longitudinal observations
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