

GICC

Population Pharmacokinetics and Exposition-PFS Relationship of Cetuximab in Metastatic Colorectal Cancer

Azzopardi N.¹, Lecomte T.¹, Ternant D.¹, Piller F.², Ohresser M.¹, Watier H.¹, Gamelin E.³, Paintaud G.¹ ¹UMR CNRS 6239 GICC, Tours, France - ²Centre de Biophysique Moleculaire UPR4301, Orleans, France - ³Centre Paul Papin, Angers, France

Results Context Cetuximab (Erbitux[®]) : • is a chimeric $IgG1\kappa$ monoclonal antibody targeted A total of 1322 cetuximab concentrations were available in 96 patients. 500 against Epidermal Growth Factor Receptor (*EGFR*). Cetuximab concentrations were satisfactory described by the PK is used in metastatic colorectal cancer (mCRC) and ed [cetuximab] (mg/L) 005 007

head and neck cancer in association with chemotherapy or radiotherapy.

Pharmacokinetics of cetuximab is poorly known in mCRC. Concentration-effect relationship has not been described

- model.
- V_1, V_2 and V_{max} were influenced by BSA. These values increased for increasing values of BSA.
- Time to progression is longer in KRAS wild-type patients with high cetuximab dose-normalized AUC.

yet.

Objectives

- To describe the pharmacokinetics of cetuximab and identify factors influencing its variability.
- To investigate the exposition-effect relationship of cetuximab in mCRC.

Patients and method

- Ninety-six mCRC patients were included in a multi-centric, non-comparative, open-label, phase II study.
- Cetuximab was combined with irinotecan and 5-FU.
- Cetuximab was administered as an infusion loading dose of 400 mg/m^2 followed by weekly 250 mg/m^2 infusions.
- Irinotecan dose was adjusted according to UGT1A1 genotype.

Model Term	Parameter	Estimate	r.s.e.(%)	Wald test (p
$V_1 = \theta_{V_1} \cdot \left(\frac{BSA}{1.795}\right)^{\theta_{BSA,V_1}} \cdot e^{\eta_{V_1}}$	$ heta_{V_1}(L)$	3.08	4	
	$ heta_{BSA,V_1}$	0.407	41	0.01
$CL = \theta_{CL} \cdot e^{\eta_{CL}}$	$\theta_{CL} (L/d)$	0.451	4	
	$COV_{\theta_{V_1},\theta_{CL}}$	0.64		
$V_2 = \theta_{V_2} \cdot \left(\frac{BSA}{1.795}\right)^{\theta_{BSA,V_2}} \cdot e^{\eta_{V_2}}$	$ heta_{V_2}(L)$	4.05	7	
	$ heta_{BSA,V_2}$	0.596	56	0.01
$Q = \theta_Q$	$\theta_Q \ (L/d)$	0.839	0	
$V_{max} = \theta_{V_{max}} \cdot \left(\frac{BSA}{1.795}\right)^{\theta_{BSA, V_{max}}} \cdot e^{\eta_{V_{max}}}$	$ heta_{V_{max}} \ (mg/d)$	12.4	7	
	$ heta_{BSA,V_{max}}$	1.17	23	2×10^{-1}
$K_M = \theta_{K_M}$	$\theta_{K_M} (mg/L)$	0.05	1	
$Y = e_1 + F(1 + e_2)$	σ_{e_1}	3×10^{-11}	_	
	σ_{e_2}	0.22	2	

Table 2: Estimates of model parameters.

Figure 1: Individual model-predicted vs observed cetuximab concentrations.

Figure 2: Histogram and QQ plot of normalised prediction distribution errors.

PFS

	Median	Range
Age (years)	63	(38 - 80)
Body weight (kg)	73	(34 - 113)
BSA (m^2)	1.795	(1.206 - 2.269)
	n	%
SEX		
Male	53	55.2%
Female	43	44.8%
KRAS		
wild-type	32	62.7%
muted	19	37.2%
Nonassessable	45	

Table 1: Patients caracteristics - BSA: Body Surface Area in m^2 .

Pharmacokinetics model

Cetuximab concentrations were described using a best twomodel with compartment both first-order and saturable (Michaelis-Menten) eliminations. V_1 and V_2 were central and peripheral volumes of distribution,

respectively, CL and Q were systemic and distribution clearances, respectively. V_{max} was maximum elimination rate and K_M was concentration leading to half V_{max} . A population approach was applied using MONOLIX 3.1.

PK

1000

Time (day)

Figure 3: Observed and predicted concentrations of cetuximab across time for one typical patient.

Time to progression (day) Figure 5: Time to progresion was not significativly different between KRAS *wild-type* and *muted* groups.

Progression free survival

Progression free survival (PFS) was calculated as the delay between the first cetuximab infusion and the first observation of disease progression or death from any cause. If a patient had not progressed or died, PFS was censored at the time of last follow-up.

Cetuximab dose-normalized AUC was used as a timeindependant PFS prognostic factor.

Concentrations (mg/L)

Figure 4: Elimination vs cetuximab concentrations. Elimination increases at low concentrations.

Time to progression (day) Figure 6: Influence of cetuximab dose-normalized AUC on PFS

in KRAS *wild-type* patients.

Conclusions

• Cetuximab pharmacokinetics was satisfactorily described using a two-compartment model combining linear and nonlinear elimination rates.

• Time to progression is longer in KRAS *wild-type* patients with high cetuximab dose-normalized AUC.