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Introduction
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EMR integration Clinical analytics Continuous learning
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challenges to successful adoption

user interface (Ul/UX)
. education / support
. integration with hospital systems (EHR)
. funding

1.

2

3

4

5. prove cost/benefit
6. regulatory

7.

science

https://www.youtube.com/watch?v=CCIMA7FCpX0
ACoP preconference 2018
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themes of this talk

1. model selection
2. individual fit
3. between-occasion variability

4. beyond exposure
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model selection
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model selection

“How do | know this model
works for my patients?”
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model selection

* even when right age class, assumptions:
e trial population == new population
« parameter distribution

e covariate effects
* error magnitude

* no bias data collection / analysis
» drug administration
« drug assay
* creatinine assay
. etc...
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model selection: retrospective evaluation

* Pull data from EMR
demographics + dosing + TDM

* Implement candidate models

* Perform predictive checks
population-level / individual level
a priori / a posteriori
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model selection: a priori evaluation
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Collaboration with Radboud Applied Pharmacometrics Group
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model selection: a posteriori evaluation

subject 1
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model selection: retrospective evaluation
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model selection: retrospective evaluation

goal = fit for purpose
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individual fit
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individual fit

“Why is the fit for this patient off ?”
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individual fit: outlier subject
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individual fit: outlier subject

distribution of n

concentration

fit to TDM data

125-

100-

75 -

== ipred

o —— pred

50-

25 -

time




Insighthb

individual fit: parametric prior-adjustment

distribution of n
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individual fit

Apply with care!

overfitting
inter-occasion variability
regression to the mean
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individual fit: non-parametric prior-adjustment
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individual fit: non-parametric prior-adjustment
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Individual fit: model updating

refine model

Implement
PK model

collect data

use in practice

e.qg. with flattened priors
for extreme subjects
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inter-occassion variability
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Inter-occasion variability

“| saw this patient last month,
can we use the knowledge
learned from his previous visit?”
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inter-occasion variability

“Use of individual estimates specific to a previous occasion lead to
reduced predictive power in forecasting future exposure”

12 -

clearance (L/hr)
°

1 2 3 4 5 6
occasion
1. Abrantes J et al. PAGE 2017
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inter-occasion variability
first issue

* what is occasion?
e "visit”
* “treatment cycle”
« "1 day”
e “arbitrary n days”

» often not defined specitically in original paper
* not always matching clinical practice
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inter-occasion variability: models including IOV
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inter-occasion variability

long-term data is common

subject 2
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inter-occasion variability
when no IOV reported: ignore IOV, but weigh data with time
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inter-occasion variability
when no IOV reported: ignore IOV, but weigh data with time
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Inter-occasion variability

“| saw this patient last month,
can we use the knowledge
learned from his previous visit?”
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beyond exposure
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Exposure-outcome relationships

“C.... should be 15-20 mg/L to be effective”

Illf C

min

>20 then 5x higher nephrotoxicity”

* subjective, qualitative, usually ROC-based!
e population-dependent

1) A-K Hamberg and RJ Keizer. Ther Drug Monit. 2017 Jun;39(3):303



https://www.ncbi.nlm.nih.gov/pubmed/?term=hamberg%5Bau%5D+keizer%5Bau%5D
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Exposure-outcome relationships

binary decision rules
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Exposure-outcome relationships

binary decision rules
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Exposure-outcome relationships
continuous link with outcome / toxicity
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Exposure-outcome relationships
Instead of binary exposure rules:

Example table

regimen

1000 mg q12 400
1500 mg q12 600
2000 mg q12 800
1000 mg g8 600

* allows individualization on PD, toxicity, outcome, as well as on PK

10
15
20
18
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Exposure-outcome relationships

Exposure target attainment

Improved outcome /

Reduced toxicity

Reduced costs

Pharmacological aim

Medical aim

Financial aim
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