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Introduction

Nonparametric NLME methodologies make no
assumptions regarding the form of the
random effects distribution and are a more
general alternative to more common
parametric NLME methods. Mallet showed
that a maximum likelihood nonparametric
distribution estimator can always be found as
a discrete distribution {P;, S;},j=1,2,, M
where each S; is a point in the D-dimensional
random effects space, and the P;’s are
positive probabilities that sum to 1. The total
number of support points M does not exceed
N, the number of subjects and often is
considerably smaller.

Recently NONMEM® 6 introduced a simple
nonparametric methodology where support
points are fixed to the post hoc estimates from
a preliminary parametric (e.g. FO, FOCE, or
Laplace) analysis. Optimal probabilities on
these supports are then computed, which is a
relatively simple convex optimization problem.
Here we extend that methodology to optimize
both probabilities and support point positions,
a much more difficult non-convex global
optimization problem.

Parametric post hoc estimates are
suboptimal nonparametric support points

Fig A) shows the true observed bimodal distribution for 700
subjects (ETA_Ke ~ 1/2 N(-0.41, 0.0625) + 2 N(0.41, 00625),
eta_V~N(0, 0.0625), Ke = exp(eta_Ke), V=exp(eta_V), from a
simulated linear one-compartment IV bolus NLME model

DV = dose*exp(-Ke*time)/V *exp(eps) , eps=0.1

while B) shows the distribution of the post hoc estimates of
eta_Ke after an FOCE fit using a normality assumption for the
random effects . Note that the bimodality in eta_Ke has been
completely masked by the shrinkage phenomenon. Fig C)
shows the bimodal but still too narrow distribution of the
means of the individual subject nonparametric distributions
from a nonparametric fit with parametric FOCE post hoc
supports, while D) shows the wider corresponding distribution
of the individual means for the fully optimized nonparametric
fit using the algortihm described here. The nonparametric 2LL
value for D is higher than for C by 24.506. At right (bottom of
central column),Ahe nonparametric estimate of the cdf for
eta_Ke is shown in comparison with the observed distribution
of the true (simulated) eta_Ke values.
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An optimal (over probabilifies and support point
positions) discrete nonparametric estimator from
simulated data for a simple linear one compartment
IV-bolus PK model: the M=70 optimal support points
(red circles) and probabilities (proportional to areas
of circles) are superimposed on N=800 normally
distributed true values (blue crosses) of the
elimination rate constant K and volume of
distribution V. Note here K and V represent
structural parameters (e.g. , K = TV_K*exp(eta_K) ).
Here the true random effect distribution is normal.

Optimization of nonparametric log
likelihood over probabilities

Maximize LL(P), where
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L, are fixed conditional likelihoods
determined by evaluating the residual error
model at all support point S for subject I.

This is a convex problem with a convex
dual:
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A very fast primal dual algorithm due to
Burke can be used that simultaneously
solves the primal and dual. The dual
solution weights W, define a simple Fedorov
type criterion as a linear combination of
conditional likelihoods over subjects. This
allows new candidate support points to be
quickly screened to determine if entry into
the support point set will improve the
solution.

Nonparametic estimated eta Ke cdf (optimized supports) vs obsened cdf
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An evolutionary algorithm:

1. Initialization
Set initial population = {S}, the post hoc
estimates from an initial parametric
estimation analysis.
Compute {P} using the primal dual
probability optimization algorithm. The
nonzero components of P identify an
optimal support subset of size M =N.

2. Population expansion
For each S, (regardless of membership in
current optimal subset), compute a set of
‘promising’ candidate descendants
{C.5: C,3, ..., Cy;) using a proposal function
(e.g. , random, quasi-random, or grid
based search of a localized region
centered at S;, screening proposed points
with the Fedorov duality criterion).

3. Population reduction

Optimize probabilities on current
population of support points to find
optimal next generation starting points.
Keep all optimal support points as well as
the best (by Fedorov duality criterion)
descendant of each original S;to maintain
population diversity.

Iterate steps 2 and 3 for as many
‘generations’ as desired.

Results

The algorithm has been successfully run on
over 40 distinct ‘real world’ and simulated
models. Validations of selected models
against the USC*PACK NPAG algorithm
usually show similar results but the current
algorithm is more efficient (note NPAG uses a
special case of steps 2 and 3 of the algorithm
presented here without the Fedorov
screening)

Conclusion

An evolutionary nonparametric algorithm that
optimizes both support point positions and
probabilities has been developed. It can
produce nonparametric distributions with much
higher likelihoods than nonparametric
algorithms such as that used in NONMEM 6
which use fixed support points. A novel
component that significantly enhances
efficiency is the use of the dual solution in the
probability optimization step to screen
candidates for the next generation of the
population of support points.
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