

Evaluation of dosing of E7820 in humans from preclinical and clinical data using a biomarker

RJ Keizer^{1,2}, Y Funahashi³, T Semba³, J Wanders³, JH Beijnen,^{1,2,4}, JHM Schellens^{2,4}, ADR Huitema^{1,2}

- 1 Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute / Slotervaart Hospital, Amsterdam, NL
- 2 Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, NL
- 3 Eisai Co. Limited, UK / Japan
- 4 Division of Drug Toxicology, Section of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University

Introduction

E7820:

- novel, oral anti-cancer agent
- inhibits angiogenesis by inhibition of mRNA expression of α_2 -integrin^[1]
- has shown to inhibit tumor growth in preclinical experiments^[2] and is now being tested in phase I and II.

Aims:

- Develop a PK-PD model from preclinical experiments, describing changes in α_2 -integrin expression levels and tumor growth inhibition in response to treatment with E7820.
- Investigate what integrin inhibition levels are correlated with tumor stasis
- Investigate whether these target levels are achieved in patients using tolerable doses

Preclinical data

Tumor growth experiments:

- xenografted mice, 5 dose levels
- pancreatic KP-1 tumor
- doses 0–200 mg/kg, during 21 days
- α_2 -Integrin levels were measured on platelets by FACS, tumor size using a caliper.

PK-PD modeling:

NONMEM VI, visual predictive checks constructed to judge model fit. Base model shown below. Several models for tumor growth inhibition were investigated.

PK-PD model

Key findings

Preclinical simulations:

Moderate inhibition of integrin expression on platelets already correlated in tumor growth inhibition

Target levels: $I_{inh,50} = 14.7 \%$

 $I_{inh,90} = 17.9 \%$

Clinical simulations:

At the MTD (100 mg qd):

- >95% of patients reached $I_{inh,50}$
- >50% of patients reached $I_{inh,90}$

Model evaluation (preclinical)

Observed and model predicted integrin expression (upper) and tumor growth inhibition (lower) at dose range

Model simulations (preclinical)

inhibition over dose range

Further research

- Currently, investigations are in progress if these targets are achieved in the clinic, (at the maximum tolerable dose, or lower)
- More research is needed to investigate the validity of α_2 -integrin expression as a biomarker for tumor growth inhibition
- The model may aid further clinical development of E7820

References

[1] Funahashi et al. Cancer Res, vol. 62, 2002, pp. 6116-6123.

[2] Semba et al. Clin Cancer Res, vol. 10, 2004, pp. 1430-1438

Model evaluation (clinical)

on platelets in patients, for low and high dose levels.

Model simulations (clinical)

Table 1. Expected relative integrin expression inhibition at steady state, obtained from simulations of clinical dosing regimens.

Dosing regimen	Expected $I_{int,av}$ at $t = 21$ (CI 95%)
50 mg qd	12.8% (9.1% – 17.7%)
70 mg qd	17.2% (11.9% – 23.3%)
100 mg qd	23.0% (16.5% – 30.2%)
200 mg qd	37.8% (29.1% – 48.0%)

Expected α_2 -integrin expression profiles (relative to baseline, without residual variability) during four continuous dosing regimens (qd). Grey areas indicate the 90% model prediction intervals.