PAGE23, Alicante 2014

In-silico Comparison of MTD Determination in a Phase I Dose-finding Framework

Camille Vong (1,2), Sylvain Fouliard (2), Quentin Chalret du Rieu (2), Ionas Kloos (3), Lena Friberg (1), Marylore Chenel (2)

¹Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden ²Clinical Pharmacokinetics & Pharmacometrics department, and ³Oncology Business Unit, Institut de Recherches Internationales Servier, Suresnes, France

Primary objective: MTD

Maximum Tolerated Dose (MTD) vs. Recommended Phase 2 Dose (RP2D)

Motivating statistics for Recommended Phase II Dose (RP2D)

FDA approved oncology drugs having their registered doses within 20% of their RPD2

Motivating statistics for Recommended Phase II Dose (RP2D)

Among them, exactly as their RPD2

Reference: Jardim et al. 2013

Uniqueness of Oncology phase I trials

- Huge emphasis of Ethical conduct:
 - Vulnerable and rare patients population
 - Heterogeneous treatment-resistance
 - Most responses occur 80%-120% of MTD*
 - reduced dose exploration range carried forward
 i.e. 1 or 2 doses in the vicinity of RP2D in Phase II/III

\rightarrow The success of future trials is conditioned on the estimate of RP2D in phase I oncology trials

Low success probability

for majority of oncology trials

Oncology trials are conducted as **3+3 designs** namely "Traditional approach"

Why do we fancy this method?

Reference: Storer et al. 1989

Common knowledge

Poor operating characteristics of 3+3 designs

Tends to treat a high percentage of patients at doses outside of the therapeutic range.

UNEFFICIENT

Not reliable for selecting the correct maximum tolerated dose

Use only the current cohort to make next dose assignment decision

Aims of this talk

To demonstrate the need of a paradigm change

To illustrate using a real oncology example how Clinical Trial Simulation (CTS) can help to investigate the **predictivity** of different MTD determination methods **to the true MTD**

The combination therapy and its main DLT

Thrombocytopenia

DLT

as Platelet count < 25x10⁹/L as **Grade 4 toxicity** (CTCAE v4.0) during the 1st cycle ONLY

Data and study designs

Two "3+3 design" dose-escalation studies

Clinical RP2D at 60 mg/m² was "suspiciously" low

EWOC: Escalation With **O**verdose **C**ontrol

TPI:Toxicity **P**robability **I**nterval

RP2D methodology *Comparison Framework*

RP2D₃₊₃ RP2D_{crm} RP2D_{ewo} RP2D_{tpi} RP2D_{pkpd} RP2D_{clin} % RP2D patients with Trajectory EFFICIENT SAFE DLT Over or under ETHICAL dosing

Thrombocytopenia model

Thrombocytopenia model

Diagnostics

Prediction-corrected Visual Predicted Check plots

Observations

Median of the obs.

Model-based RP2D_{PKPD} $120 mg/m^2$

RP2D_{crm}, RP2D_{ewo}, RP2D_{tpi} starting setup

CRM, EWOC, TPI use Bayesian theory

Reference: Quigley et al. 1990, Moller et al. & Goodman et al. 1995

CRM designs

EWOC designs

 Introducing an <u>overdose</u> <u>control</u>: expected proportion of patients treated at doses above MTD is equal to a specified value α, the feasibility bound.

 Using a two-parameter logistic model

EWOC: 75th quantile of the posterior distribution

TPI designs

- Introducing Toxicity Probability intervals
- Introducing corresponding penalty loss function
- Using a two-parameter logistic model

TPI: posterior distribution that maximizes probability in *target interval* with less than x % patients treated above MTD

Reference: Quigley et al. 1990, Moller et al. & Goodman et al. 1995

Results

RP2D distributions – Clinical RP2D at 60 mg/m²

with Free doxo	Number dose level difference
3+3 design	-3
CRM	-1
EWOC	-1
TPI	-2
Clinical	-4

CRM: Continuous Reassessment Method EWOC: Escalation With Overdose Control TPI: Toxicity Probability Interval

- Median
- ·-· Min & Max

Lower & Upper Q

Results

Comparison of % patients at P(tox) = [0.17-0.33]

Results % patients with DLT distribution

** significant using Mann-Whitney U Test

Less DLTs with 3+3 trials

CRM: Continuous Reassessment Method EWOC: Escalation With Overdose Control TPI: Toxicity Probability Interval

Take-home messages

- Differences between Bayesian methodologies not as important as the need to reconsider "3+3 design"
- Using all data available, the PKPD model-based analysis at end of Phase I as a valuable tool to re-evaluate RP2D if discrepancy found from 3+3 designs
- ➢ Benefits of Bayesian methods But statistically complex
 → Simulations are vital !
 non-intuitive → Better communication
 More team work

Concluding remarks

... Like a domino effect

The importance of getting it **right** from the beginning!

Acknowledgments

Mats Karlsson Pharmacometrics group

Clinical Pharmacokinetics & Pharmacometrics dept. Fréderic Dubois & Marie-Karelle Rivière (Biostats)

UNOVARTIS Björn Bornkamp

Institut national

France Mentré

de la santé et de la recherche médicale

Apotekarsocieteten for travel grant

Thank You for your attention!

