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Objective

Methods

Results

Calculation of globally optimal designs require the evaluation of an integral over the

complete parameter space. The appearance of the Fisher information matrix in the

integrand makes evaluations computationally expensive.

For ED optimal design this integral is given by

In this work we compared the performance of the following four different

numerical algorithms in computing ED optimal designs implemented in PopED [1]:

1. Monte-Carlo integration with random sampling (MC-RS): The integral in

equation (1) is approximated using the definition of the expectation. Given a

random variable X with pdf pX(x) on the set χ, than the expected value of a

function g of X is

Thus. equation (1) can be approximated by sampling X and computing the mean

of g(x) over the sample SX.

2. Monte-Carlo integration with Latin hypercube sampling (MC-LHS):

Instead of random sampling, stratified Latin hypercube sampling is used to

generate SX. All other calculations are identical to the MC-RS method.

3. Laplace integral approximation (LAPLACE): integration is performed by

finding the mode of the integrand and performing a second order Taylor

expansion around this point

4. Laplace integral approximation with BFGS Hessian (LAPLACE-

BFGS): An approximate Hessian, obtained by employing the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method during the minimization step (*) is used for

the Taylor expansion instead of a numerically differentiated Hessian as in

LAPLACE. Random effect parameters are automatically log-transformed to allow

unconstrained minimization and application of the BFGS method.

Comparison: Performance of the different methods was assessed in terms of

optimal sampling points, runtime and objective function value. Variability of Monte-

Carlo methods was evaluated by repeating computations for 50 (MC-RS 50, MC-

LHS 50) and 500 (MC-RS 500, MC-LHS 500) samples.

Design: A hypothetical experimental design for a drug following a simple one

compartment model with IV bolus dosing, 20 individuals and 2 samples per subject

was used for the comparison. The model was parameterized in terms of clearance

(CL) and volume of distribution (V). Inter-individual variability (IIV) was modeled as

being log-normally distributed and an additive model for the residual unexplained

variability was used. Log-normal ED uncertainty was assumed for all 4 parameters

(CL, V, IIV-CL, IIV-V); for the fixed effects 0.05 and for the random effects 0.09 was

used as variance of the uncertainty.

To compare Monte-Carlo integration and Laplace integral approximation for global

optimal design in terms of precision, runtime and best study design. Furthermore, to

explore the performance of a new algorithm using the Laplace approximation, but

avoiding explicit calculation of 2nd order derivatives.
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where x is the vector of design variables, α is the vector of model parameter, p(α) is

its probability distribution function (pdf) of the parameters α, F is the Fisher

information matrix and |.| denotes the matrix determinant. Several approximations

with different properties can be used to evaluate the integral. Despite

approximation error and its influence on the optimal design, runtime is of

particular importance.
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Method OFV1021 [95% CI]

MC-RS 50 3.27 [2.2-5.0]

MC-RS 500 3.33 [2.8-3.8]

MC-LHS 50 3.24 [2.2-4.6]

MC-LHS 500 3.22 [2.9-3.7]

LAPLACE 2.95

LAPLACE-BFGS 3.01

All methods tested were implemented in PopED 2.11

Monte-Carlo methods are easy and flexible but need high number of samples to 

give stable results

Laplace approximation constitutes fast alternative for priors with continuous 

probability distribution function

Laplace integral approximation with BFGS Hessian gave same sampling times 

with approx. 30% shorter runtimes

Conclusions
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Fig 2. ED integral (equation 1) evaluated for a grid (25x25 between 0 and 0.7

hours) of sampling time pairs. Blue squares indicate sampling time pairs with

low, red squares time pairs with high information.

Tab 1. Comparison of

integration results obtained by

evaluating the example model

with a fixed design. Values

shown are mean OFV (ED

integral) and 95% non-

parametric confidence interval

from 100 integrations for the

MC methods.
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Fig 1. Runtime in seconds averaged over 100 integrations
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