

and Validation Applications in Drug Development Timeline Processes.

Ground-breaking Software for Modelling, Simulation, Optimization, Estimation

Sánchez-Herrero, Sergio¹; Serna, Jenifer¹; Diego García-Álvarez²; Rueda-Ferreiro, Almudena¹.

¹Simulation Department, Empresarios Agrupados Internacional S.A., Madrid, Spain.

²Computer Department, University of Valladolid, Valladolid, Spain.

INTRODUCTION

- The drug development process achieve greater safety, efficiency, cost effectiveness and timeliness drug testing for humans [1].
 - growing number of regulatory submissions include mathematical pharmacokinetics models that simulates the concentration of a drug over time in tissue(s) and blood [2].
- There is not any software to manage Non-Compartmental analysis, Compartmental PK/PD models and physiologically based pharmacokinetic (PBPK) estimation and simulation models in a unique object-orientated software.

OBJECTIVES

1. To explore PhysPK architecture based on top-down programming capacity for

RESULTS

NCA Single oral dose:

WinNonlin oral dose data		k												
NCA Metrics	Phys	PK	Win	Nonlin										
ID	9026	6	9	026				• •						
Adjuested R ²	0.92	2	0	.922		•			-					
R ²	0.96	1	0.961											
N_points_Lambda_Z	3			3	10 -									
Lambda_Z	0.15	5	0.155		-									
HL_Lambda_Z	4.48	4.488		.488										
Max_rate	1497	.6	14	197.6		•							1 1	
Tmax_rate	5			5	100 -	0 9	90	192 2	88	384 480 Nominal tim	5/6 ne [hour]	672	768 864	YOU
Rate_last	62.4	1 (52.4	-									
Mid_Pt_last	21			21	-		_							
AURC_Last	8970.5	544	897	70.544	(l/ɓn)		•	-						
AURC_Infinity	9374.5	9374.553		74.553	ug/mL]									
AURC_Infinity_pred	9420.527		9420.527											
Vol_UR	1171		1171		Concer									
Amount_Recovered	8642.7		8642.7											
Percent_Recovered	86.427		86.427											
Calculation_method	Linear		Linear		1) 20		00 40		600 Nominal tin	800 800		1000	1200
		Table	PK par	ameter re	lated to La	mbda_Z	IV in	fusion s	ingle	dose [3]				
		Sub	j. 1	R2	R2ADJ	NLAN	ΛZ	LAMZ	Z	T1/2	AU	C All	AUCInf.	CL
Dan	IQ		ica	0.982	0.970	5		0.011		398.976	193	67.20	23453.9	0.023
PK/PD		Phy	sPK	0.982	0.970	5		0.011		398.976	193	56.42	23443.2	0.023

IV infusion single dose [3]: WinNonlin subject 1 IV infusion single dose data versus PhysPK

continuous-discrete systems to L-ADME and physiological mechanisms.

- 2. To show NCA, QSP, PK/PD/PBPK validated models with PhysPK.
- 3. To export and connect with external tools like excel or python.

Modeling and Simulation Software for Physiological Systems **PHYSPK**[®]